Suppr超能文献

用于生物聚合物弯曲刚性稳健测量的光谱分析方法。

Spectral analysis methods for the robust measurement of the flexural rigidity of biopolymers.

机构信息

Department of Mathematics, University of California, Santa Barbara, California, USA.

出版信息

Biophys J. 2012 Mar 7;102(5):1144-53. doi: 10.1016/j.bpj.2012.01.045. Epub 2012 Mar 6.

Abstract

The mechanical properties of biopolymers can be determined from a statistical analysis of the ensemble of shapes they exhibit when subjected to thermal forces. In practice, extracting information from fluorescence microscopy images can be challenging due to low signal/noise ratios and other artifacts. To address these issues, we develop a suite of tools for image processing and spectral data analysis that is based on a biopolymer contour representation expressed in a spectral basis of orthogonal polynomials. We determine biopolymer shape and stiffness using global fitting routines that optimize a utility function measuring the amount of fluorescence intensity overlapped by such contours. This approach allows for filtering of high-frequency noise and interpolation over sporadic gaps in fluorescence. We use benchmarking to demonstrate the validity of our methods, by analyzing an ensemble of simulated images generated using a simulated biopolymer with known stiffness and subjected to various types of image noise. We then use these methods to determine the persistence lengths of taxol-stabilized microtubules. We find that single microtubules are well described by the wormlike chain polymer model, and that ensembles of chemically identical microtubules show significant heterogeneity in bending stiffness, which cannot be attributed to sampling or fitting errors. We expect these approaches to be useful in the study of biopolymer mechanics and the effects of associated regulatory molecules.

摘要

生物聚合物的力学性能可以通过对它们在热作用力下表现出的形状集合进行统计分析来确定。在实践中,由于低信噪比和其他伪影,从荧光显微镜图像中提取信息可能具有挑战性。为了解决这些问题,我们开发了一套基于生物聚合物轮廓在正交多项式光谱基上的表示的图像处理和光谱数据分析工具。我们使用全局拟合例程来确定生物聚合物的形状和刚度,该例程优化了一个效用函数,该函数测量荧光强度被这些轮廓重叠的量。这种方法允许过滤高频噪声并在荧光的零星间隙上进行插值。我们使用基准测试来通过分析使用具有已知刚度的模拟生物聚合物生成的一组模拟图像来验证我们的方法,并对各种类型的图像噪声进行了分析。然后,我们使用这些方法来确定紫杉醇稳定的微管的持久长度。我们发现,单个微管可以很好地用蠕虫状链聚合物模型来描述,并且化学上相同的微管的集合在弯曲刚度上表现出显著的异质性,这不能归因于采样或拟合误差。我们期望这些方法在生物聚合物力学和相关调节分子的影响的研究中是有用的。

相似文献

1
Spectral analysis methods for the robust measurement of the flexural rigidity of biopolymers.
Biophys J. 2012 Mar 7;102(5):1144-53. doi: 10.1016/j.bpj.2012.01.045. Epub 2012 Mar 6.
2
Bending dynamics of fluctuating biopolymers probed by automated high-resolution filament tracking.
Biophys J. 2007 Jul 1;93(1):346-59. doi: 10.1529/biophysj.106.096966. Epub 2007 Apr 6.
3
Flexural rigidity measurements of biopolymers using gliding assays.
J Vis Exp. 2012 Nov 9(69):50117. doi: 10.3791/50117.
4
SOAX: a software for quantification of 3D biopolymer networks.
Sci Rep. 2015 Mar 13;5:9081. doi: 10.1038/srep09081.
5
Force fluctuations and polymerization dynamics of intracellular microtubules.
Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16128-33. doi: 10.1073/pnas.0703094104. Epub 2007 Oct 2.
6
Force spectroscopy of complex biopolymers with heterogeneous elasticity.
Soft Matter. 2013 Jan 21;9(3):772-778. doi: 10.1039/C2SM27218K.
7
Rigidity of microtubules is increased by stabilizing agents.
J Cell Biol. 1995 Aug;130(4):909-17. doi: 10.1083/jcb.130.4.909.
8
Using contact statistics to characterize structure transformation of biopolymer ensembles.
Phys Rev E. 2020 Jan;101(1-1):012419. doi: 10.1103/PhysRevE.101.012419.
9
10

引用本文的文献

1
Growth rate-dependent flexural rigidity of microtubules influences pattern formation in collective motion.
J Nanobiotechnology. 2021 Jul 19;19(1):218. doi: 10.1186/s12951-021-00960-y.
2
AutoSmarTrace: Automated chain tracing and flexibility analysis of biological filaments.
Biophys J. 2021 Jul 6;120(13):2599-2608. doi: 10.1016/j.bpj.2021.05.011. Epub 2021 May 20.
3
Automated and semi-automated enhancement, segmentation and tracing of cytoskeletal networks in microscopic images: A review.
Comput Struct Biotechnol J. 2021 Apr 15;19:2106-2120. doi: 10.1016/j.csbj.2021.04.019. eCollection 2021.
4
Entangled polymer dynamics beyond reptation.
Nat Commun. 2018 Nov 30;9(1):5098. doi: 10.1038/s41467-018-07546-7.
5
Structure-property relation and relevance of beam theories for microtubules: a coupled molecular and continuum mechanics study.
Biomech Model Mechanobiol. 2018 Apr;17(2):339-349. doi: 10.1007/s10237-017-0964-9. Epub 2017 Oct 3.
6
Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots.
Chem Soc Rev. 2017 Sep 18;46(18):5570-5587. doi: 10.1039/c7cs00030h.
7
Automatic optimal filament segmentation with sub-pixel accuracy using generalized linear models and B-spline level-sets.
Med Image Anal. 2016 Aug;32:157-72. doi: 10.1016/j.media.2016.03.007. Epub 2016 Apr 4.
8
Tubulin bond energies and microtubule biomechanics determined from nanoindentation in silico.
J Am Chem Soc. 2014 Dec 10;136(49):17036-45. doi: 10.1021/ja506385p. Epub 2014 Nov 25.
10
Role of sequence and structural polymorphism on the mechanical properties of amyloid fibrils.
PLoS One. 2014 Feb 14;9(2):e88502. doi: 10.1371/journal.pone.0088502. eCollection 2014.

本文引用的文献

1
Cell mechanics and the cytoskeleton.
Nature. 2010 Jan 28;463(7280):485-92. doi: 10.1038/nature08908.
2
Leveraging single protein polymers to measure flexural rigidity.
J Phys Chem B. 2009 Mar 26;113(12):3837-44. doi: 10.1021/jp808328a.
3
Microtubule curvatures under perpendicular electric forces reveal a low persistence length.
Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):7941-6. doi: 10.1073/pnas.0704169105. Epub 2008 Mar 21.
4
Microtubule dynamics depart from the wormlike chain model.
Phys Rev Lett. 2008 Jan 18;100(2):028102. doi: 10.1103/PhysRevLett.100.028102. Epub 2008 Jan 15.
5
Persistence length measurements from stochastic single-microtubule trajectories.
Nano Lett. 2007 Oct;7(10):3138-44. doi: 10.1021/nl071696y. Epub 2007 Sep 21.
6
Bending dynamics of fluctuating biopolymers probed by automated high-resolution filament tracking.
Biophys J. 2007 Jul 1;93(1):346-59. doi: 10.1529/biophysj.106.096966. Epub 2007 Apr 6.
7
Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length.
Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10248-10253. doi: 10.1073/pnas.0603931103. Epub 2006 Jun 26.
8
Flexural rigidity of individual microtubules measured by a buckling force with optical traps.
Biophys J. 2006 Mar 1;90(5):1687-96. doi: 10.1529/biophysj.104.055483. Epub 2005 Dec 9.
9
Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly.
Nature. 2005 Jun 16;435(7044):911-5. doi: 10.1038/nature03606.
10
A bending mode analysis for growing microtubules: evidence for a velocity-dependent rigidity.
Biophys J. 2004 Oct;87(4):2723-36. doi: 10.1529/biophysj.103.038877.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验