Department of Bioengineering, Clemson University, Clemson, South Carolina.
Department of Physics and Astronomy, Clemson University, Clemson, South Carolina.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019 Jul;11(4):e1553. doi: 10.1002/wnan.1553. Epub 2019 Feb 11.
As technology at the small scale is advancing, motile engineered microstructures are becoming useful in drug delivery, biomedicine, and lab-on-a-chip devices. However, traditional engineering methods and materials can be inefficient or functionally inadequate for small-scale applications. Increasingly, researchers are turning to the biology of the cytoskeleton, including microtubules, actin filaments, kinesins, dyneins, myosins, and associated proteins, for both inspiration and solutions. They are engineering structures with components that range from being entirely biological to being entirely synthetic mimics of biology and on scales that range from isotropic continuous networks to single isolated structures. Motile biological microstructures trace their origins from the development of assays used to study the cytoskeleton to the array of structures currently available today. We define 12 types of motile biological microstructures, based on four categories: entirely biological, modular, hybrid, and synthetic, and three scales: networks, clusters, and isolated structures. We highlight some key examples, the unique functionalities, and the potential applications of each microstructure type, and we summarize the quantitative models that enable engineering them. By categorizing the diversity of motile biological microstructures in this way, we aim to establish a framework to classify these structures, define the gaps in current research, and spur ideas to fill those gaps. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Nanotechnology Approaches to Biology > Cells at the Nanoscale Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
随着微观尺度技术的进步,可移动的工程微观结构在药物输送、生物医学和芯片实验室设备中变得越来越有用。然而,传统的工程方法和材料对于小尺度的应用可能效率低下或功能不足。越来越多的研究人员开始从细胞骨架的生物学中寻找灵感和解决方案,包括微管、肌动蛋白丝、驱动蛋白、动力蛋白、肌球蛋白和相关蛋白。他们正在设计结构,这些结构的组成部分从完全是生物的到完全是生物学的合成模拟物,尺度从各向同性的连续网络到单个孤立的结构。可移动的生物微观结构起源于用于研究细胞骨架的测定方法的发展,以及目前可用的各种结构。我们根据四个类别(完全生物的、模块化的、混合的和合成的)和三个尺度(网络、簇和孤立结构)定义了 12 种可移动的生物微观结构类型。我们强调了一些关键的例子、每个微观结构类型的独特功能和潜在应用,并总结了能够工程化这些微观结构的定量模型。通过以这种方式对可移动的生物微观结构进行分类,我们旨在建立一个框架来对这些结构进行分类,定义当前研究中的差距,并激发填补这些差距的想法。本文属于以下类别: 生物学中的纳米技术方法 > 纳米尺度系统 生物学中的纳米技术方法 > 纳米尺度的细胞 生物启发型纳米材料 > 基于蛋白质和病毒的结构 治疗方法和药物发现 > 新兴技术