Suppr超能文献

从孤立结构到连续网络:基于细胞骨架的运动工程生物微结构的分类。

From isolated structures to continuous networks: A categorization of cytoskeleton-based motile engineered biological microstructures.

机构信息

Department of Bioengineering, Clemson University, Clemson, South Carolina.

Department of Physics and Astronomy, Clemson University, Clemson, South Carolina.

出版信息

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019 Jul;11(4):e1553. doi: 10.1002/wnan.1553. Epub 2019 Feb 11.

Abstract

As technology at the small scale is advancing, motile engineered microstructures are becoming useful in drug delivery, biomedicine, and lab-on-a-chip devices. However, traditional engineering methods and materials can be inefficient or functionally inadequate for small-scale applications. Increasingly, researchers are turning to the biology of the cytoskeleton, including microtubules, actin filaments, kinesins, dyneins, myosins, and associated proteins, for both inspiration and solutions. They are engineering structures with components that range from being entirely biological to being entirely synthetic mimics of biology and on scales that range from isotropic continuous networks to single isolated structures. Motile biological microstructures trace their origins from the development of assays used to study the cytoskeleton to the array of structures currently available today. We define 12 types of motile biological microstructures, based on four categories: entirely biological, modular, hybrid, and synthetic, and three scales: networks, clusters, and isolated structures. We highlight some key examples, the unique functionalities, and the potential applications of each microstructure type, and we summarize the quantitative models that enable engineering them. By categorizing the diversity of motile biological microstructures in this way, we aim to establish a framework to classify these structures, define the gaps in current research, and spur ideas to fill those gaps. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Nanotechnology Approaches to Biology > Cells at the Nanoscale Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.

摘要

随着微观尺度技术的进步,可移动的工程微观结构在药物输送、生物医学和芯片实验室设备中变得越来越有用。然而,传统的工程方法和材料对于小尺度的应用可能效率低下或功能不足。越来越多的研究人员开始从细胞骨架的生物学中寻找灵感和解决方案,包括微管、肌动蛋白丝、驱动蛋白、动力蛋白、肌球蛋白和相关蛋白。他们正在设计结构,这些结构的组成部分从完全是生物的到完全是生物学的合成模拟物,尺度从各向同性的连续网络到单个孤立的结构。可移动的生物微观结构起源于用于研究细胞骨架的测定方法的发展,以及目前可用的各种结构。我们根据四个类别(完全生物的、模块化的、混合的和合成的)和三个尺度(网络、簇和孤立结构)定义了 12 种可移动的生物微观结构类型。我们强调了一些关键的例子、每个微观结构类型的独特功能和潜在应用,并总结了能够工程化这些微观结构的定量模型。通过以这种方式对可移动的生物微观结构进行分类,我们旨在建立一个框架来对这些结构进行分类,定义当前研究中的差距,并激发填补这些差距的想法。本文属于以下类别: 生物学中的纳米技术方法 > 纳米尺度系统 生物学中的纳米技术方法 > 纳米尺度的细胞 生物启发型纳米材料 > 基于蛋白质和病毒的结构 治疗方法和药物发现 > 新兴技术

相似文献

2
Biomolecular motors in nanoscale materials, devices, and systems.生物分子马达在纳米材料、器件和系统中的应用。
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014 Mar-Apr;6(2):163-77. doi: 10.1002/wnan.1252. Epub 2013 Dec 11.
5
Engineering with Biomolecular Motors.生物分子马达的工程应用
Acc Chem Res. 2018 Dec 18;51(12):3015-3022. doi: 10.1021/acs.accounts.8b00296. Epub 2018 Oct 30.
7
Special section on biomimetics of movement.运动仿生学专题
Bioinspir Biomim. 2011 Dec;6(4):040201. doi: 10.1088/1748-3182/6/4/040201. Epub 2011 Nov 29.

引用本文的文献

1
Active Bending of Disordered Microtubule Bundles by Kinesin Motors.驱动蛋白马达对无序微管束的主动弯曲
ACS Omega. 2022 Nov 18;7(48):43820-43828. doi: 10.1021/acsomega.2c04958. eCollection 2022 Dec 6.
2
Wrinkling Instability in 3D Active Nematics.三维主动线虫中的起皱不稳定性。
Nano Lett. 2020 Sep 9;20(9):6281-6288. doi: 10.1021/acs.nanolett.0c01546. Epub 2020 Aug 19.

本文引用的文献

2
Emergence of coexisting ordered states in active matter systems.活性物质系统中共存有序态的涌现。
Science. 2018 Jul 20;361(6399):255-258. doi: 10.1126/science.aao5434. Epub 2018 Jun 28.
4
Metachronal motion of artificial magnetic cilia.人工磁纤毛的协同运动。
Soft Matter. 2018 May 16;14(19):3689-3693. doi: 10.1039/c8sm00549d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验