Suppr超能文献

通过在微流控琼脂糖通道系统中跟踪单细胞生长来进行快速抗生素药敏试验。

Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system.

机构信息

Department of Electrical Engineering and Computer Science, Seoul National University, San 56-1, Daehak-dong, Gwanak-gu, Seoul 151-744, South Korea.

出版信息

Lab Chip. 2013 Jan 21;13(2):280-7. doi: 10.1039/c2lc41055a. Epub 2012 Nov 21.

Abstract

Sepsis is one of the major causes of death in the US, necessitating rapid treatment with proper antibiotics. Conventional systems for antibiotic susceptibility testing (AST) take far too long (16-24 h) for the timely treatment of sepsis. This is because they rely on measuring optical density, which relates to bacterial growth, to determine the minimal inhibitory concentrations (MICs) of relevant antibiotics. Thus, there is a desperate need for more improved and rapid AST (RAST) systems. The RAST system can also reduce the growing number of clinical problems that are associated with antibiotic resistance caused by methicillin-resistant Staphylococcus aureus, vancomycin-resistant Staphylococcus aureus, and vancomycin-resistant enterococci. In this study, we demonstrate a microfluidic agarose channel (MAC) system that reduces the AST assay time for determining MICs by single bacterial time lapse imaging. The MAC system immobilizes bacteria by using agarose in a microfluidic culture chamber so that single cell growth can be tracked by microscopy. Time lapse images of single bacterial cells under different antibiotic culture conditions were analyzed by image processing to determine MICs. Three standard bacteria from the Clinical and Laboratory Standard Institute (CLSI) were tested with several kinds of antibiotics. MIC values that were well matched with those of the CLSI were obtained within only 3-4 h. We expect that the MAC system can offer rapid diagnosis of sepsis and thus, more efficient and proper medication in the clinical setting.

摘要

脓毒症是美国主要死亡原因之一,需要迅速用适当的抗生素进行治疗。传统的抗生素药敏试验(AST)系统需要太长时间(16-24 小时)才能及时治疗脓毒症。这是因为它们依赖于测量与细菌生长相关的光密度来确定相关抗生素的最小抑菌浓度(MICs)。因此,迫切需要更改进和快速的 AST(RAST)系统。RAST 系统还可以减少与耐甲氧西林金黄色葡萄球菌、耐万古霉素金黄色葡萄球菌和耐万古霉素肠球菌引起的抗生素耐药相关的越来越多的临床问题。在这项研究中,我们展示了一种微流控琼脂糖通道(MAC)系统,通过单细菌时滞成像减少了确定 MIC 的 AST 测定时间。MAC 系统通过在微流控培养室中使用琼脂糖来固定细菌,以便通过显微镜跟踪单细胞生长。通过图像处理分析在不同抗生素培养条件下单个细菌细胞的时滞图像来确定 MIC 值。用几种抗生素测试了来自临床和实验室标准研究所(CLSI)的三种标准细菌。在仅 3-4 小时内获得了与 CLSI 非常匹配的 MIC 值。我们预计 MAC 系统可以提供脓毒症的快速诊断,从而在临床环境中提供更有效和适当的药物治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验