Suppr超能文献

果蝇 ETS 家族转录抑制因子 Yan 的长程染色质占有率与聚合之间的关系。

The relationship between long-range chromatin occupancy and polymerization of the Drosophila ETS family transcriptional repressor Yan.

机构信息

Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA.

出版信息

Genetics. 2013 Feb;193(2):633-49. doi: 10.1534/genetics.112.146647. Epub 2012 Nov 19.

Abstract

ETS family transcription factors are evolutionarily conserved downstream effectors of Ras/MAPK signaling with critical roles in development and cancer. In Drosophila, the ETS repressor Yan regulates cell proliferation and differentiation in a variety of tissues; however, the mechanisms of Yan-mediated repression are not well understood and only a few direct target genes have been identified. Yan, like its human ortholog TEL1, self-associates through an N-terminal sterile α-motif (SAM), leading to speculation that Yan/TEL1 polymers may spread along chromatin to form large repressive domains. To test this hypothesis, we created a monomeric form of Yan by recombineering a point mutation that blocks SAM-mediated self-association into the yan genomic locus and compared its genome-wide chromatin occupancy profile to that of endogenous wild-type Yan. Consistent with the spreading model predictions, wild-type Yan-bound regions span multiple kilobases. Extended occupancy patterns appear most prominent at genes encoding crucial developmental regulators and signaling molecules and are highly conserved between Drosophila melanogaster and D. virilis, suggesting functional relevance. Surprisingly, although occupancy is reduced, the Yan monomer still makes extensive multikilobase contacts with chromatin, with an overall pattern similar to that of wild-type Yan. Despite its near-normal chromatin recruitment, the repressive function of the Yan monomer is significantly impaired, as evidenced by elevated target gene expression and failure to rescue a yan null mutation. Together our data argue that SAM-mediated polymerization contributes to the functional output of the active Yan repressive complexes that assemble across extended stretches of chromatin, but does not directly mediate recruitment to DNA or chromatin spreading.

摘要

ETS 家族转录因子是 Ras/MAPK 信号下游的进化保守效应因子,在发育和癌症中发挥着关键作用。在果蝇中,ETS 抑制因子 Yan 在各种组织中调节细胞增殖和分化;然而,Yan 介导的抑制机制尚不清楚,并且只鉴定了少数直接靶基因。Yan 与其人类同源物 TEL1 一样,通过 N 端无菌 α 基序(SAM)自我缔合,这导致人们推测 Yan/TEL1 聚合物可能沿着染色质扩散形成大的抑制域。为了验证这一假说,我们通过重组一个点突变来创建 Yan 的单体形式,该突变阻止了 SAM 介导的自缔合,并将其插入 yan 基因组座,然后将其全基因组染色质占有率与内源性野生型 Yan 的占有率进行比较。与扩散模型的预测一致,野生型 Yan 结合的区域跨越多个千碱基。扩展的占有模式在编码关键发育调节剂和信号分子的基因中最为明显,并且在果蝇和 D. virilis 之间高度保守,这表明它们具有功能相关性。令人惊讶的是,尽管 Yan 单体的占有率降低,但它仍然与染色质进行广泛的多千碱基接触,整体模式与野生型 Yan 相似。尽管 Yan 单体的染色质募集接近正常,但它的抑制功能明显受损,这表现为靶基因表达升高,并且无法挽救 yan 缺失突变。总的来说,我们的数据表明,SAM 介导的聚合作用有助于 Yan 抑制复合物的功能性输出,这些复合物在扩展的染色质上组装,但不会直接介导对 DNA 的招募或染色质的扩散。

相似文献

2
Chromatin occupancy patterns of the ETS repressor Yan: a mechanism for buffering gene expression against noise?
Fly (Austin). 2013 Apr-Jun;7(2):92-8. doi: 10.4161/fly.24162. Epub 2013 Apr 1.
5
DNA Occupancy of Polymerizing Transcription Factors: A Chemical Model of the ETS Family Factor Yan.
Biophys J. 2017 Jan 10;112(1):180-192. doi: 10.1016/j.bpj.2016.11.901.
6
Derepression by depolymerization; structural insights into the regulation of Yan by Mae.
Cell. 2004 Jul 23;118(2):163-73. doi: 10.1016/j.cell.2004.07.010.
8
The SAM domain of human TEL2 can abrogate transcriptional output from TEL1 (ETV-6) and ETS1/ETS2.
PLoS One. 2012;7(5):e37151. doi: 10.1371/journal.pone.0037151. Epub 2012 May 17.
10
Yan regulates Lozenge during Drosophila eye development.
Dev Genes Evol. 2002 Jul;212(6):267-76. doi: 10.1007/s00427-002-0241-4. Epub 2002 Jun 13.

引用本文的文献

3
The CAF-1 complex couples Hippo pathway target gene expression and DNA replication.
Mol Biol Cell. 2019 Nov 1;30(23):2929-2942. doi: 10.1091/mbc.E19-07-0387. Epub 2019 Sep 25.
4
Longevity is determined by ETS transcription factors in multiple tissues and diverse species.
PLoS Genet. 2019 Jul 29;15(7):e1008212. doi: 10.1371/journal.pgen.1008212. eCollection 2019 Jul.
5
Repressive Gene Regulation Synchronizes Development with Cellular Metabolism.
Cell. 2019 Aug 8;178(4):980-992.e17. doi: 10.1016/j.cell.2019.06.023. Epub 2019 Jul 25.
9
Polycomb group (PcG) proteins and Pax6 cooperate to inhibit reprogramming of the developing eye.
Development. 2018 Apr 4;145(7):dev160754. doi: 10.1242/dev.160754.
10
DNA Occupancy of Polymerizing Transcription Factors: A Chemical Model of the ETS Family Factor Yan.
Biophys J. 2017 Jan 10;112(1):180-192. doi: 10.1016/j.bpj.2016.11.901.

本文引用的文献

1
ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia.
Genome Res. 2012 Sep;22(9):1813-31. doi: 10.1101/gr.136184.111.
2
Inferring direct DNA binding from ChIP-seq.
Nucleic Acids Res. 2012 Sep 1;40(17):e128. doi: 10.1093/nar/gks433. Epub 2012 May 18.
3
New negative feedback regulators of Egfr signaling in Drosophila.
Genetics. 2012 Aug;191(4):1213-26. doi: 10.1534/genetics.112.141093. Epub 2012 May 17.
4
Developmental regulation of chromatin conformation by Hox proteins in Drosophila.
Cell Rep. 2012 Apr 19;1(4):350-9. doi: 10.1016/j.celrep.2012.03.003.
7
Consequences of eukaryotic enhancer architecture for gene expression dynamics, development, and fitness.
PLoS Genet. 2011 Nov;7(11):e1002364. doi: 10.1371/journal.pgen.1002364. Epub 2011 Nov 10.
9
Multiple enhancers ensure precision of gap gene-expression patterns in the Drosophila embryo.
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13570-5. doi: 10.1073/pnas.1109873108. Epub 2011 Aug 8.
10
Complex interactions between cis-regulatory modules in native conformation are critical for Drosophila snail expression.
Development. 2011 Sep;138(18):4075-84. doi: 10.1242/dev.069146. Epub 2011 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验