Suppr超能文献

帕哈约可内酯A - B的α,γ - 羟基 - β - 氨基酸Athmu的生物合成。

Biosynthesis of Athmu, a α,γ-hydroxy-β-amino acid of pahayokolides A-B.

作者信息

Liu Li, Bearden Daniel W, Rodriguez Juan C, Rein Kathleen S

机构信息

Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.

出版信息

Tetrahedron Lett. 2012 Dec 12;53(50):6758-6760. doi: 10.1016/j.tetlet.2012.09.119.

Abstract

Pahayokolides A-B are cyanobacteria derived non-ribosomal peptides which exhibit cytotoxicity against a number of cancer cell lines. The biosynthetic origin of the 3-amino-2,5,7,8-tetrahydroxy-10-methylundecanoic acid (Athmu) moiety has been investigated using stable isotope incorporation experiments. While α-ketoisocaproic acid (α-KIC), α-hydroxyisocaproic acid (α-HIC) and leucine all serve as precursors to Athmu, the feeding of [1-(13)C] α-KIC results in more than threefold greater (13)C enrichment than the other precursors. This result suggests that α-KIC is the immediate precursor which is selected and activated by the adenylation domain of the loading NRPS module and subsequently reduced in a fashion similar to that of the recently identified pathways for cryptophycins A-B, cereulide and valinomycin.

摘要

帕海奥科利德A - B是源自蓝藻的非核糖体肽,对多种癌细胞系具有细胞毒性。已通过稳定同位素掺入实验研究了3 - 氨基 - 2,5,7,8 - 四羟基 - 10 - 甲基十一烷酸(Athmu)部分的生物合成起源。虽然α - 酮异己酸(α - KIC)、α - 羟基异己酸(α - HIC)和亮氨酸均作为Athmu的前体,但用[1 - (13)C]α - KIC饲喂导致的(13)C富集比其他前体高出三倍以上。这一结果表明,α - KIC是被装载NRPS模块的腺苷化结构域选择并激活的直接前体,随后以类似于最近鉴定的隐藻素A - B、蜡样芽胞杆菌毒素和缬氨霉素合成途径的方式被还原。

相似文献

1
Biosynthesis of Athmu, a α,γ-hydroxy-β-amino acid of pahayokolides A-B.
Tetrahedron Lett. 2012 Dec 12;53(50):6758-6760. doi: 10.1016/j.tetlet.2012.09.119.
7
Alpha-ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain.
Brain Res. 2010 Apr 9;1324:75-84. doi: 10.1016/j.brainres.2010.02.018. Epub 2010 Feb 11.
8
Investigation of Biosynthetic Precursors of 3-Isobutyl-2-Methoxypyrazine Using Stable Isotope Labeling Studies in Bell Pepper Fruits ( L.).
J Agric Food Chem. 2022 Jun 8;70(22):6719-6725. doi: 10.1021/acs.jafc.2c01747. Epub 2022 May 27.
10
Chemoenzymatic synthesis of cryptophycin anticancer agents by an ester bond-forming non-ribosomal peptide synthetase module.
J Am Chem Soc. 2011 Sep 21;133(37):14492-5. doi: 10.1021/ja204716f. Epub 2011 Aug 25.

引用本文的文献

本文引用的文献

1
Substrate specificity of the citrate transporter CitP of Lactococcus lactis.
J Bacteriol. 2012 Jul;194(14):3627-35. doi: 10.1128/JB.00196-12. Epub 2012 May 4.
2
Hoiamide D, a marine cyanobacteria-derived inhibitor of p53/MDM2 interaction.
Bioorg Med Chem Lett. 2012 Jan 1;22(1):683-8. doi: 10.1016/j.bmcl.2011.10.054. Epub 2011 Oct 24.
5
Biologically active secondary metabolites from marine cyanobacteria.
Curr Opin Biotechnol. 2010 Dec;21(6):787-93. doi: 10.1016/j.copbio.2010.09.019. Epub 2010 Oct 26.
6
New peptides isolated from Lyngbya species: a review.
Mar Drugs. 2010 Jun 9;8(6):1817-37. doi: 10.3390/md8061817.
7
Synergistic allelochemicals from a freshwater cyanobacterium.
Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11183-8. doi: 10.1073/pnas.0914343107. Epub 2010 Jun 7.
8
TonB-dependent transporters and their occurrence in cyanobacteria.
BMC Biol. 2009 Oct 12;7:68. doi: 10.1186/1741-7007-7-68.
10
Biotechnological and industrial significance of cyanobacterial secondary metabolites.
Biotechnol Adv. 2009 Jul-Aug;27(4):521-39. doi: 10.1016/j.biotechadv.2009.04.009. Epub 2009 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验