Suppr超能文献

乳球菌 CitP 柠檬酸转运蛋白的底物特异性。

Substrate specificity of the citrate transporter CitP of Lactococcus lactis.

机构信息

Top Institute Food and Nutrition, Wageningen, The Netherlands.

出版信息

J Bacteriol. 2012 Jul;194(14):3627-35. doi: 10.1128/JB.00196-12. Epub 2012 May 4.

Abstract

The citrate transporter CitP of lactic acid bacteria catalyzes electrogenic precursor-product exchange of citrate versus L-lactate during citrate-glucose cometabolism. In the absence of sugar, L-lactate is replaced by the metabolic intermediates/end products pyruvate, α-acetolactate, and acetate. In this study, the binding and translocation properties of CitP were analyzed systematically for a wide variety of mono- and dicarboxylates of the form X-CR(2)-COO(-), where X represents OH (2-hydroxy acid), O (2-keto acid), or H (acid) and R groups differ in size, hydrophobicity, and composition. It follows that CitP is a very promiscuous carboxylate transporter. A carboxylate group is both essential and sufficient for recognition by the transporter. A C-2 atom is not essential, formate is a substrate, and C-2 may be part of a ring structure, as in benzoate. The R group may be as bulky as an indole ring structure. For all monocarboxylates of the form X-CHR-COO(-), the hydroxy (X = OH) analogs were the preferred substrates. The preference for keto (X = O) or acid (X = H) analogs was dependent on the bulkiness of the R group, such that the acid was preferred for small R groups and the 2-ketoacid was preferred for more bulky R groups. The C(4) to C(6) dicarboxylates succinate, glutarate, and adipate were also substrates of CitP. The broad substrate specificity is discussed in the context of a model of the binding site of CitP. Many of the substrates of CitP are intermediates or products of amino acid metabolism, suggesting that CitP may have a broader physiological function than its role in citrate fermentation alone.

摘要

乳酸菌的柠檬酸转运蛋白 CitP 在柠檬酸-葡萄糖共代谢过程中催化柠檬酸与 L-乳酸之间的电致前体-产物交换。在没有糖的情况下,L-乳酸被代谢中间产物/终产物丙酮酸、α-乙酰乳酸和乙酸取代。在这项研究中,系统分析了 CitP 对各种形式为 X-CR(2)-COO(-)的单羧酸和二羧酸的结合和转运特性,其中 X 代表 OH(2-羟基酸)、O(2-酮酸)或 H(酸),R 基团在大小、疏水性和组成上有所不同。因此,CitP 是一种非常混杂的羧酸转运蛋白。羧酸基团是被转运蛋白识别所必需和充分的。C-2 原子不是必需的,甲酸盐是一种底物,并且 C-2 可能是环结构的一部分,如苯甲酸。R 基团可以像吲哚环结构一样庞大。对于所有形式为 X-CHR-COO(-)的单羧酸,羟基(X = OH)类似物是首选底物。对酮(X = O)或酸(X = H)类似物的偏好取决于 R 基团的庞大程度,使得对于小 R 基团,酸是首选,而对于更大的 R 基团,则首选 2-酮酸。C(4)到 C(6)二羧酸琥珀酸、戊二酸和己二酸也是 CitP 的底物。广泛的底物特异性在 CitP 结合位点模型的背景下进行了讨论。CitP 的许多底物是氨基酸代谢的中间产物或产物,这表明 CitP 可能具有比单独在柠檬酸发酵中更广泛的生理功能。

相似文献

1
Substrate specificity of the citrate transporter CitP of Lactococcus lactis.
J Bacteriol. 2012 Jul;194(14):3627-35. doi: 10.1128/JB.00196-12. Epub 2012 May 4.
2
Mechanism of citrate metabolism by an oxaloacetate decarboxylase-deficient mutant of Lactococcus lactis IL1403.
J Bacteriol. 2011 Aug;193(16):4049-56. doi: 10.1128/JB.05012-11. Epub 2011 Jun 10.
4
Uptake of α-ketoglutarate by citrate transporter CitP drives transamination in Lactococcus lactis.
Appl Environ Microbiol. 2013 Feb;79(4):1095-101. doi: 10.1128/AEM.02254-12. Epub 2012 Nov 30.
6
Citrate uptake in exchange with intermediates in the citrate metabolic pathway in Lactococcus lactis IL1403.
J Bacteriol. 2011 Feb;193(3):706-14. doi: 10.1128/JB.01171-10. Epub 2010 Nov 29.
8
Citrate, low pH and amino acid limitation induce citrate utilization in Lactococcus lactis biovar diacetylactis.
Microb Biotechnol. 2018 Mar;11(2):369-380. doi: 10.1111/1751-7915.13031. Epub 2017 Dec 7.
9
Rerouting citrate metabolism in Lactococcus lactis to citrate-driven transamination.
Appl Environ Microbiol. 2012 Sep;78(18):6665-73. doi: 10.1128/AEM.01811-12. Epub 2012 Jul 13.
10
The citrate transport system of Lactococcus lactis subsp. lactis biovar diacetylactis is induced by acid stress.
Appl Environ Microbiol. 1998 Mar;64(3):850-7. doi: 10.1128/AEM.64.3.850-857.1998.

引用本文的文献

1
Functional Verification of the Citrate Transporter Gene in a Wine Lactic Acid Bacterium, .
Front Bioeng Biotechnol. 2022 May 9;10:894870. doi: 10.3389/fbioe.2022.894870. eCollection 2022.
3
Adipic acid tolerance screening for potential adipic acid production hosts.
Microb Cell Fact. 2017 Feb 1;16(1):20. doi: 10.1186/s12934-017-0636-6.
4
Ca2+-citrate uptake and metabolism in Lactobacillus casei ATCC 334.
Appl Environ Microbiol. 2013 Aug;79(15):4603-12. doi: 10.1128/AEM.00925-13. Epub 2013 May 24.
5
Uptake of α-ketoglutarate by citrate transporter CitP drives transamination in Lactococcus lactis.
Appl Environ Microbiol. 2013 Feb;79(4):1095-101. doi: 10.1128/AEM.02254-12. Epub 2012 Nov 30.
6
Biosynthesis of Athmu, a α,γ-hydroxy-β-amino acid of pahayokolides A-B.
Tetrahedron Lett. 2012 Dec 12;53(50):6758-6760. doi: 10.1016/j.tetlet.2012.09.119.
7
Rerouting citrate metabolism in Lactococcus lactis to citrate-driven transamination.
Appl Environ Microbiol. 2012 Sep;78(18):6665-73. doi: 10.1128/AEM.01811-12. Epub 2012 Jul 13.

本文引用的文献

1
Mechanism of citrate metabolism by an oxaloacetate decarboxylase-deficient mutant of Lactococcus lactis IL1403.
J Bacteriol. 2011 Aug;193(16):4049-56. doi: 10.1128/JB.05012-11. Epub 2011 Jun 10.
2
Citrate uptake in exchange with intermediates in the citrate metabolic pathway in Lactococcus lactis IL1403.
J Bacteriol. 2011 Feb;193(3):706-14. doi: 10.1128/JB.01171-10. Epub 2010 Nov 29.
3
Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L.
Lett Appl Microbiol. 2009 May;48(5):542-7. doi: 10.1111/j.1472-765X.2009.02565.x. Epub 2009 Feb 2.
4
The 2-hydroxycarboxylate transporter family: physiology, structure, and mechanism.
Microbiol Mol Biol Rev. 2005 Dec;69(4):665-95. doi: 10.1128/MMBR.69.4.665-695.2005.
5
Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products.
FEMS Microbiol Rev. 2005 Aug;29(3):591-610. doi: 10.1016/j.femsre.2005.04.002.
6
Perspectives on the use of organic acids and short chain fatty acids as antimicrobials.
Poult Sci. 2003 Apr;82(4):632-9. doi: 10.1093/ps/82.4.632.
9
A functional-phylogenetic classification system for transmembrane solute transporters.
Microbiol Mol Biol Rev. 2000 Jun;64(2):354-411. doi: 10.1128/MMBR.64.2.354-411.2000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验