Suppr超能文献

采用分层病例队列设计评估生物标志物的预测价值。

Evaluating the predictive value of biomarkers with stratified case-cohort design.

作者信息

Liu Dandan, Cai Tianxi, Zheng Yingye

机构信息

Department of Biostatistics, Vanderbilt University, Nashville, TN 37232, USA.

出版信息

Biometrics. 2012 Dec;68(4):1219-27. doi: 10.1111/j.1541-0420.2012.01787.x. Epub 2012 Nov 22.

Abstract

Identification of novel biomarkers for risk assessment is important for both effective disease prevention and optimal treatment recommendation. Discovery relies on the precious yet limited resource of stored biological samples from large prospective cohort studies. Case-cohort sampling design provides a cost-effective tool in the context of biomarker evaluation, especially when the clinical condition of interest is rare. Existing statistical methods focus on making efficient inference on relative hazard parameters from the Cox regression model. Drawing on recent theoretical development on the weighted likelihood for semiparametric models under two-phase studies (Breslow and Wellner, 2007), we propose statistical methods to evaluate accuracy and predictiveness of a risk prediction biomarker, with censored time-to-event outcome under stratified case-cohort sampling. We consider nonparametric methods and a semiparametric method. We derive large sample properties of proposed estimators and evaluate their finite sample performance using numerical studies. We illustrate new procedures using data from Framingham Offspring Study to evaluate the accuracy of a recently developed risk score incorporating biomarker information for predicting cardiovascular disease.

摘要

识别用于风险评估的新型生物标志物对于有效的疾病预防和最佳治疗建议都很重要。发现依赖于大型前瞻性队列研究中储存的生物样本这一珍贵但有限的资源。病例队列抽样设计在生物标志物评估方面提供了一种具有成本效益的工具,特别是当感兴趣的临床情况罕见时。现有的统计方法侧重于从Cox回归模型对相对风险参数进行有效推断。借鉴两阶段研究下半参数模型加权似然的最新理论发展(Breslow和Wellner,2007),我们提出了统计方法来评估风险预测生物标志物的准确性和预测性,在分层病例队列抽样下具有删失的事件发生时间结局。我们考虑非参数方法和半参数方法。我们推导了所提出估计量的大样本性质,并使用数值研究评估它们的有限样本性能。我们使用弗明汉后代研究的数据说明了新程序,以评估最近开发的纳入生物标志物信息的风险评分预测心血管疾病的准确性。

相似文献

1
Evaluating the predictive value of biomarkers with stratified case-cohort design.
Biometrics. 2012 Dec;68(4):1219-27. doi: 10.1111/j.1541-0420.2012.01787.x. Epub 2012 Nov 22.
2
Robust risk prediction with biomarkers under two-phase stratified cohort design.
Biometrics. 2016 Dec;72(4):1037-1045. doi: 10.1111/biom.12515. Epub 2016 Apr 1.
3
Nonparametric Maximum Likelihood Estimators of Time-Dependent Accuracy Measures for Survival Outcome Under Two-Stage Sampling Designs.
J Am Stat Assoc. 2018;113(522):882-892. doi: 10.1080/01621459.2017.1295866. Epub 2017 Feb 28.
4
Efficient semiparametric estimation of short-term and long-term hazard ratios with right-censored data.
Biometrics. 2013 Dec;69(4):840-9. doi: 10.1111/biom.12097. Epub 2013 Nov 4.
5
Evaluating prognostic accuracy of biomarkers in nested case-control studies.
Biostatistics. 2012 Jan;13(1):89-100. doi: 10.1093/biostatistics/kxr021. Epub 2011 Aug 19.
6
Joint modeling of longitudinal and survival data with the Cox model and two-phase sampling.
Lifetime Data Anal. 2017 Jan;23(1):136-159. doi: 10.1007/s10985-016-9364-1. Epub 2016 Mar 23.
7
Kernel machine testing for risk prediction with stratified case cohort studies.
Biometrics. 2016 Jun;72(2):372-81. doi: 10.1111/biom.12452. Epub 2015 Dec 21.
9
Evaluating prognostic accuracy of biomarkers under competing risk.
Biometrics. 2012 Jun;68(2):388-96. doi: 10.1111/j.1541-0420.2011.01671.x. Epub 2011 Dec 7.
10
IMPROVING EFFICIENCY IN BIOMARKER INCREMENTAL VALUE EVALUATION UNDER TWO-PHASE DESIGNS.
Ann Appl Stat. 2017 Jun;11(2):638-654. doi: 10.1214/16-AOAS997. Epub 2017 Jul 20.

引用本文的文献

1
Estimating disease onset distribution functions in mutation carriers with censored mixture data.
J R Stat Soc Ser C Appl Stat. 2014 Jan;63(1):1-23. doi: 10.1111/rssc.12025. Epub 2013 Aug 8.
4
Efficient Evaluation of Prediction Rules in Semi-Supervised Settings under Stratified Sampling.
J R Stat Soc Series B Stat Methodol. 2022 Sep;84(4):1353-1391. doi: 10.1111/rssb.12502. Epub 2022 Apr 26.
5
Two-phase stratified sampling and analysis for predicting binary outcomes.
Biostatistics. 2023 Jul 14;24(3):585-602. doi: 10.1093/biostatistics/kxab044.
6
Study Design Considerations for Cancer Biomarker Discoveries.
J Appl Lab Med. 2018 Sep;3(2):282-289. doi: 10.1373/jalm.2017.025809.
7
Nonparametric Maximum Likelihood Estimators of Time-Dependent Accuracy Measures for Survival Outcome Under Two-Stage Sampling Designs.
J Am Stat Assoc. 2018;113(522):882-892. doi: 10.1080/01621459.2017.1295866. Epub 2017 Feb 28.
8
Evaluating longitudinal markers under two-phase study designs.
Biostatistics. 2019 Jul 1;20(3):485-498. doi: 10.1093/biostatistics/kxy013.
9
Normalized emphysema scores on low dose CT: Validation as an imaging biomarker for mortality.
PLoS One. 2017 Dec 11;12(12):e0188902. doi: 10.1371/journal.pone.0188902. eCollection 2017.
10
IMPROVING EFFICIENCY IN BIOMARKER INCREMENTAL VALUE EVALUATION UNDER TWO-PHASE DESIGNS.
Ann Appl Stat. 2017 Jun;11(2):638-654. doi: 10.1214/16-AOAS997. Epub 2017 Jul 20.

本文引用的文献

1
A prospective study of inflammation markers and endometrial cancer risk in postmenopausal hormone nonusers.
Cancer Epidemiol Biomarkers Prev. 2011 May;20(5):971-7. doi: 10.1158/1055-9965.EPI-10-1222. Epub 2011 Mar 17.
2
Cardiovascular risk prediction: basic concepts, current status, and future directions.
Circulation. 2010 Apr 20;121(15):1768-77. doi: 10.1161/CIRCULATIONAHA.109.849166.
5
Time-dependent Predictive Values of Prognostic Biomarkers with Failure Time Outcome.
J Am Stat Assoc. 2008;103(481):362-368. doi: 10.1198/016214507000001481.
6
Weighted analyses for cohort sampling designs.
Lifetime Data Anal. 2009 Mar;15(1):24-40. doi: 10.1007/s10985-008-9095-z. Epub 2008 Aug 19.
9
The effect of including C-reactive protein in cardiovascular risk prediction models for women.
Ann Intern Med. 2006 Jul 4;145(1):21-9. doi: 10.7326/0003-4819-145-1-200607040-00128.
10
Survival model predictive accuracy and ROC curves.
Biometrics. 2005 Mar;61(1):92-105. doi: 10.1111/j.0006-341X.2005.030814.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验