Department of Biostatistics, University of Washington, 1705 NE Pacific Street, Seattle, WA, USA.
Department of Biostatistics, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA.
Biostatistics. 2019 Jul 1;20(3):485-498. doi: 10.1093/biostatistics/kxy013.
Little attention has been given to the design of efficient studies to evaluate longitudinal biomarkers. Measuring longitudinal markers on an entire cohort is cost prohibitive and, especially for rare outcomes such as cancer, may be infeasible. Thus, methods for evaluation of longitudinal biomarkers using efficient and cost-effective study designs are needed. Case cohort (CCH) and nested case-control (NCC) studies allow investigators to evaluate biomarkers rigorously and at reduced cost, with only a small loss in precision. In this article, we develop estimators of several measures to evaluate the accuracy and discrimination of predicted risk under CCH and NCC study designs. We use double inverse probability weighting (DIPW) to account for censoring and sampling bias in estimation and inference procedures. We study the asymptotic properties of the proposed estimators. To facilitate inference using two-phase longitudinal data, we develop valid resampling-based variance estimation procedures under CCH and NCC. We evaluate the performance of our estimators under CCH and NCC using simulation studies and illustrate them on a NCC study within the hepatitis C antiviral long-term treatment against cirrhosis (HALT-C) clinical trial. Our estimators and inference procedures perform well under CCH and NCC, provided that the sample size at the time of prediction (effective sample size) is reasonable. These methods are widely applicable, efficient, and cost-effective and can be easily adapted to other study designs used to evaluate prediction rules in a longitudinal setting.
人们对评估纵向生物标志物的高效研究设计关注甚少。在整个队列中测量纵向标志物的成本过高,对于癌症等罕见结局,可能是不可行的。因此,需要使用高效且具有成本效益的研究设计来评估纵向生物标志物的方法。病例队列 (CCH) 和巢式病例对照 (NCC) 研究允许研究人员以降低成本的方式严格评估生物标志物,仅略微降低精度。在本文中,我们开发了用于评估 CCH 和 NCC 研究设计下预测风险准确性和区分度的几种措施的估计量。我们使用双重逆概率加权 (DIPW) 来校正估计和推断过程中的删失和抽样偏差。我们研究了所提出估计量的渐近性质。为了方便使用两阶段纵向数据进行推断,我们在 CCH 和 NCC 下开发了有效的基于重抽样的方差估计程序。我们通过模拟研究评估了在 CCH 和 NCC 下的估计量的性能,并在丙型肝炎抗病毒长期治疗肝硬化 (HALT-C) 临床试验的 NCC 研究中进行了说明。我们的估计量和推断程序在 CCH 和 NCC 下表现良好,前提是预测时的样本量(有效样本量)合理。这些方法具有广泛的适用性、高效性和成本效益性,并且可以轻松适应用于评估纵向环境下预测规则的其他研究设计。