Suppr超能文献

应用半参数和非参数方法评估病例对照研究中的风险预测模型。

Assessing risk prediction models in case-control studies using semiparametric and nonparametric methods.

机构信息

Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA.

出版信息

Stat Med. 2010 Jun 15;29(13):1391-410. doi: 10.1002/sim.3876.

Abstract

The predictiveness curve is a graphical tool that characterizes the population distribution of Risk(Y)=P(D=1|Y), where D denotes a binary outcome such as occurrence of an event within a specified time period and Y denotes predictors. A wider distribution of Risk(Y) indicates better performance of a risk model in the sense that making treatment recommendations is easier for more subjects. Decisions are more straightforward when a subject's risk is deemed to be high or low. Methods have been developed to estimate predictiveness curves from cohort studies. However, early phase studies to evaluate novel risk prediction markers typically employ case-control designs. Here, we present semiparametric and nonparametric methods for evaluating a continuous risk prediction marker that accommodates case-control data. Small sample properties are investigated through simulation studies. The semiparametric methods are substantially more efficient than their nonparametric counterparts under a correctly specified model. We generalize them to settings where multiple prediction markers are involved. Applications to prostate cancer risk prediction markers illustrate methods for comparing the risk prediction capacities of markers and for evaluating the increment in performance gained by adding a marker to a baseline risk model. We propose a modified Hosmer-Lemeshow test for case-control study data to assess calibration of the risk model that is a natural complement to this graphical tool.

摘要

预测曲线是一种图形工具,用于描述风险(Y) = P(D=1|Y)的总体分布,其中 D 表示二元结果,如在指定时间段内发生事件,Y 表示预测因子。风险(Y)的分布越广,风险模型的性能越好,因为对于更多的受试者,制定治疗建议就更容易。当一个人的风险被认为高或低时,决策就更简单了。已经开发了从队列研究中估计预测曲线的方法。然而,评估新型风险预测标志物的早期阶段研究通常采用病例对照设计。在这里,我们提出了用于评估连续风险预测标志物的半参数和非参数方法,该方法适用于病例对照数据。通过模拟研究研究了小样本特性。在正确指定的模型下,半参数方法比非参数方法效率高得多。我们将它们推广到涉及多个预测标志物的情况。前列腺癌风险预测标志物的应用说明了比较标志物风险预测能力的方法,以及评估通过向基线风险模型添加标志物获得的性能提高的方法。我们提出了一种用于病例对照研究数据的修改后的 Hosmer-Lemeshow 检验,以评估风险模型的校准,这是对该图形工具的自然补充。

相似文献

3
Semiparametric methods for evaluating risk prediction markers in case-control studies.
Biometrika. 2009 Dec;96(4):991-997. doi: 10.1093/biomet/asp040. Epub 2009 Oct 12.
4
Evaluating prognostic accuracy of biomarkers under competing risk.
Biometrics. 2012 Jun;68(2):388-96. doi: 10.1111/j.1541-0420.2011.01671.x. Epub 2011 Dec 7.
5
Semiparametric methods for evaluating the covariate-specific predictiveness of continuous markers in matched case-control studies.
J R Stat Soc Ser C Appl Stat. 2010;59(3):437-456. doi: 10.1111/j.1467-9876.2009.00707.x.
6
Semiparametric models of time-dependent predictive values of prognostic biomarkers.
Biometrics. 2010 Mar;66(1):50-60. doi: 10.1111/j.1541-0420.2009.01246.x. Epub 2009 Apr 13.
7
Evaluating the predictiveness of a continuous marker.
Biometrics. 2007 Dec;63(4):1181-8. doi: 10.1111/j.1541-0420.2007.00814.x. Epub 2007 May 8.
9
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
Zhonghua Jie He He Hu Xi Za Zhi. 2024 Feb 12;47(2):101-119. doi: 10.3760/cma.j.cn112147-20231019-00247.
10
Multi-cohort modeling strategies for scalable globally accessible prostate cancer risk tools.
BMC Med Res Methodol. 2019 Oct 15;19(1):191. doi: 10.1186/s12874-019-0839-0.

引用本文的文献

1
A SEMIPARAMETRIC METHOD FOR RISK PREDICTION USING INTEGRATED ELECTRONIC HEALTH RECORD DATA.
Ann Appl Stat. 2024 Dec;18(4):3318-3337. doi: 10.1214/24-AOAS1938. Epub 2024 Oct 31.
2
Assessing the clinical utility of biomarkers using the intervention probability curve (IPC).
Cancer Biomark. 2023 Oct 28:CBM230054. doi: 10.3233/CBM-230054.
5
Two-phase stratified sampling and analysis for predicting binary outcomes.
Biostatistics. 2023 Jul 14;24(3):585-602. doi: 10.1093/biostatistics/kxab044.
6
Integrated Biomarkers for the Management of Indeterminate Pulmonary Nodules.
Am J Respir Crit Care Med. 2021 Dec 1;204(11):1306-1316. doi: 10.1164/rccm.202012-4438OC.
7
A multi-locus predictiveness curve and its summary assessment for genetic risk prediction.
Stat Methods Med Res. 2020 Jan;29(1):44-56. doi: 10.1177/0962280218819202. Epub 2019 Jan 7.
8
Correcting Classifiers for Sample Selection Bias in Two-Phase Case-Control Studies.
Comput Math Methods Med. 2017;2017:7847531. doi: 10.1155/2017/7847531. Epub 2017 Sep 24.
9
More Accurate Oral Cancer Screening with Fewer Salivary Biomarkers.
Biomark Cancer. 2017 Oct 17;9:1179299X17732007. doi: 10.1177/1179299X17732007. eCollection 2017.
10
Using the Lorenz Curve to Characterize Risk Predictiveness and Etiologic Heterogeneity.
Epidemiology. 2016 Jul;27(4):531-7. doi: 10.1097/EDE.0000000000000499.

本文引用的文献

1
Semiparametric methods for evaluating risk prediction markers in case-control studies.
Biometrika. 2009 Dec;96(4):991-997. doi: 10.1093/biomet/asp040. Epub 2009 Oct 12.
3
Assessing the value of risk predictions by using risk stratification tables.
Ann Intern Med. 2008 Nov 18;149(10):751-60. doi: 10.7326/0003-4819-149-10-200811180-00009.
4
Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: standards for study design.
J Natl Cancer Inst. 2008 Oct 15;100(20):1432-8. doi: 10.1093/jnci/djn326. Epub 2008 Oct 7.
5
Evaluating new cardiovascular risk factors for risk stratification.
J Clin Hypertens (Greenwich). 2008 Jun;10(6):485-8. doi: 10.1111/j.1751-7176.2008.07814.x.
6
Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve.
Clin Chem. 2008 Jan;54(1):17-23. doi: 10.1373/clinchem.2007.096529. Epub 2007 Nov 16.
7
How to improve reliability and efficiency of research about molecular markers: roles of phases, guidelines, and study design.
J Clin Epidemiol. 2007 Dec;60(12):1205-19. doi: 10.1016/j.jclinepi.2007.04.020. Epub 2007 Sep 24.
8
Integrating the predictiveness of a marker with its performance as a classifier.
Am J Epidemiol. 2008 Feb 1;167(3):362-8. doi: 10.1093/aje/kwm305. Epub 2007 Nov 2.
10
Evaluating the predictiveness of a continuous marker.
Biometrics. 2007 Dec;63(4):1181-8. doi: 10.1111/j.1541-0420.2007.00814.x. Epub 2007 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验