Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, UP ALM, Col. San Pedro Zacatenco, México DF, México.
J Comput Chem. 2013 Mar 30;34(8):681-6. doi: 10.1002/jcc.23180. Epub 2012 Nov 23.
An efficient method for computing the quantum theory of atoms in molecules (QTAIM) topology of the electron density (or other scalar field) is presented. A modified Newton-Raphson algorithm was implemented for finding the critical points (CP) of the electron density. Bond paths were constructed with the second-order Runge-Kutta method. Vectorization of the present algorithm makes it to scale linearly with the system size. The parallel efficiency decreases with the number of processors (from 70% to 50%) with an average of 54%. The accuracy and performance of the method are demonstrated by computing the QTAIM topology of the electron density of a series of representative molecules. Our results show that our algorithm might allow to apply QTAIM analysis to large systems (carbon nanotubes, polymers, fullerenes) considered unreachable until now.
本文提出了一种计算原子分子量子理论(QTAIM)电子密度(或其他标量场)拓扑的有效方法。采用修正的牛顿-拉普森算法来寻找电子密度的临界点(CP)。键路径采用二阶龙格-库塔法构建。本算法的向量化使其与系统大小呈线性比例。随着处理器数量的增加(从 70%到 50%),并行效率平均降低 54%。通过计算一系列代表性分子的电子密度的 QTAIM 拓扑,验证了该方法的准确性和性能。结果表明,我们的算法可能允许对迄今为止难以处理的大型系统(碳纳米管、聚合物、富勒烯)进行 QTAIM 分析。