Cardiovascular and Metabolic Research Unit, Lakehead University, Ontario P7B 5E1, Canada.
Antioxid Redox Signal. 2013 May 20;18(15):1906-19. doi: 10.1089/ars.2012.4645. Epub 2013 Feb 7.
H2S, a third member of gasotransmitter family along with nitric oxide and carbon monoxide, exerts a wide range of cellular and molecular actions in our body. Cystathionine gamma-lyase (CSE) is a major H2S-generating enzyme in our body. Aging at the cellular level, known as cellular senescence, can result from increases in oxidative stress. The aim of this study was to investigate how H2S attenuates oxidative stress and delays cellular senescence.
Here we showed that mouse embryonic fibroblasts isolated from CSE knockout mice (CSE KO-MEFs) display increased oxidative stress and accelerated cellular senescence in comparison with MEFs from wild-type mice (WT-MEFs). The protein expression of p53 and p21 was significantly increased in KO-MEFs, and knockdown of p53 or p21 reversed CSE deficiency-induced senescence. Incubation of the cells with NaHS (a H2S donor) significantly increased the glutathione (GSH) level and rescued KO-MEFs from senescence. Nrf2 is a master regulator of the antioxidant response, and Keap1 acts as a negative regulator of Nrf2. NaHS S-sulfhydrated Keap1 at cysteine-151, induced Nrf2 dissociation from Keap1, enhanced Nrf2 nuclear translocation, and stimulated mRNA expression of Nrf2-targeted downstream genes, such as glutamate-cysteine ligase and GSH reductase.
These results provide a mechanistic insight into how H2S signaling mediates cellular senescence induced by oxidative stress.
H2S protects against cellular aging via S-sulfhydration of Keap1 and Nrf2 activation in association with oxidative stress.
H2S 是继一氧化氮和一氧化碳之后气体信号分子家族的第三个成员,在体内发挥广泛的细胞和分子作用。胱硫醚 γ 裂解酶(CSE)是体内产生 H2S 的主要酶。细胞水平的衰老,即细胞衰老,可归因于氧化应激的增加。本研究旨在探讨 H2S 如何减轻氧化应激并延缓细胞衰老。
我们发现,与野生型小鼠(WT-MEFs)的胚胎成纤维细胞(MEFs)相比,来自 CSE 敲除小鼠(CSE KO-MEFs)的 MEFs 显示出氧化应激增加和细胞衰老加速。KO-MEFs 中 p53 和 p21 的蛋白表达显著增加,而 p53 或 p21 的敲低逆转了 CSE 缺乏诱导的衰老。用 H2S 供体 NaHS 孵育细胞可显著增加谷胱甘肽(GSH)水平,并使 KO-MEFs 从衰老中恢复。Nrf2 是抗氧化反应的主要调节因子,Keap1 作为 Nrf2 的负调节因子。NaHS 在半胱氨酸 151 处 S-硫代化 Keap1,诱导 Nrf2 从 Keap1 解离,增强 Nrf2 核转位,并刺激 Nrf2 靶向下游基因如谷氨酸半胱氨酸连接酶和 GSH 还原酶的 mRNA 表达。
这些结果提供了一个机制上的见解,即 H2S 信号如何通过氧化应激诱导的细胞衰老来介导细胞衰老。
H2S 通过 Keap1 的 S-硫代化和 Nrf2 激活来防止细胞衰老,与氧化应激有关。