Neuroscience Graduate Program, University of Southern California Los Angeles, CA 90089-2520, USA.
Neural Netw. 2013 Jan;37:66-92. doi: 10.1016/j.neunet.2012.09.021. Epub 2012 Oct 17.
Our previous work developed Synthetic Brain Imaging to link neural and schema network models of cognition and behavior to PET and fMRI studies of brain function. We here extend this approach to Synthetic Event-Related Potentials (Synthetic ERP). Although the method is of general applicability, we focus on ERP correlates of language processing in the human brain. The method has two components: Phase 1: To generate cortical electro-magnetic source activity from neural or schema network models; and Phase 2: To generate known neurolinguistic ERP data (ERP scalp voltage topographies and waveforms) from putative cortical source distributions and activities within a realistic anatomical model of the human brain and head. To illustrate the challenges of Phase 2 of the methodology, spatiotemporal information from Friederici's 2002 model of auditory language comprehension was used to define cortical regions and time courses of activation for implementation within a forward model of ERP data. The cortical regions from the 2002 model were modeled using atlas-based masks overlaid on the MNI high definition single subject cortical mesh. The electromagnetic contribution of each region was modeled using current dipoles whose position and orientation were constrained by the cortical geometry. In linking neural network computation via EEG forward modeling to empirical results in neurolinguistics, we emphasize the need for neural network models to link their architecture to geometrically sound models of the cortical surface, and the need for conceptual models to refine and adopt brain-atlas based approaches to allow precise brain anchoring of their modules. The detailed analysis of Phase 2 sets the stage for a brief introduction to Phase 1 of the program, including the case for a schema-theoretic approach to language production and perception presented in detail elsewhere. Unlike Dynamic Causal Modeling (DCM) and Bojak's mean field model, Synthetic ERP builds on models of networks that mediate the relation between the brain's inputs, outputs, and internal states in executing a specific task. The neural networks used for Synthetic ERP must include neuroanatomically realistic placement and orientation of the cortical pyramidal neurons. These constraints pose exciting challenges for future work in neural network modeling that is applicable to systems and cognitive neuroscience.
我们之前的工作开发了合成脑成像技术,将认知和行为的神经和图式网络模型与大脑功能的 PET 和 fMRI 研究联系起来。我们在此将这种方法扩展到合成事件相关电位 (Synthetic ERP)。虽然该方法具有普遍适用性,但我们专注于人脑语言处理的 ERP 相关性。该方法有两个组成部分:第 1 阶段:从神经或图式网络模型生成皮质电磁源活动;第 2 阶段:从现实的人脑和头部解剖模型内的假定皮质源分布和活动生成已知的神经语言学 ERP 数据 (ERP 头皮电压地形图和波形)。为了说明该方法第 2 阶段的挑战,我们使用 Friederici 2002 年听觉语言理解模型的时空信息来定义皮质区域和激活时间过程,以便在 ERP 数据的正向模型中实现。使用基于图谱的掩模在 MNI 高分辨率单个主体皮质网格上覆盖 2002 年模型的皮质区域。使用其位置和方向受到皮质几何形状约束的电流偶极子对每个区域的电磁贡献进行建模。在通过 EEG 正向建模将神经网络计算与神经语言学中的经验结果联系起来时,我们强调神经网络模型需要将其架构与皮质表面的合理几何模型联系起来,并且概念模型需要细化并采用基于大脑图谱的方法来允许他们的模块精确地与大脑锚定。第 2 阶段的详细分析为简要介绍该计划的第 1 阶段奠定了基础,包括在别处详细介绍的语言产生和感知的图式理论方法的案例。与动态因果建模 (DCM) 和 Bojak 的平均场模型不同,Synthetic ERP 建立在介导大脑在执行特定任务时的输入、输出和内部状态之间关系的网络模型之上。用于 Synthetic ERP 的神经网络必须包括皮质锥体细胞的神经解剖学上逼真的放置和方向。这些约束为适用于系统和认知神经科学的神经网络建模的未来工作提出了令人兴奋的挑战。