Warzecha Anne-Kathrin, Rosner Ronny, Grewe Jan
Dept. Neurobiol., Bielefeld University, 33619 Bielefeld, Germany.
Tierphysiologie, Philipps-Universität Marburg, 35032 Marburg, Germany.
J Physiol Paris. 2013 Jan-Apr;107(1-2):26-40. doi: 10.1016/j.jphysparis.2012.10.002. Epub 2012 Nov 22.
Nervous systems encode information about dynamically changing sensory input by changes in neuronal activity. Neuronal activity changes, however, also arise from noise sources within and outside the nervous system or from changes of the animal's behavioral state. The resulting variability of neuronal responses in representing sensory stimuli limits the reliability with which animals can respond to stimuli and may thus even affect the chances for survival in certain situations. Relevant sources of noise arising at different stages along the motion vision pathway have been investigated from the sensory input to the initiation of behavioral reactions. Here, we concentrate on the reliability of processing visual motion information in flies. Flies rely on visual motion information to guide their locomotion. They are among the best established model systems for the processing of visual motion information allowing us to bridge the gap between behavioral performance and underlying neuronal computations. It has been possible to directly assess the consequences of noise at major stages of the fly's visual motion processing system on the reliability of neuronal signals. Responses of motion sensitive neurons and their variability have been related to optomotor movements as indicators for the overall performance of visual motion computation. We address whether and how noise already inherent in the stimulus, e.g. photon noise for the visual system, influences later processing stages and to what extent variability at the output level of the sensory system limits behavioral performance. Recent advances in circuit analysis and the progress in monitoring neuronal activity in behaving animals should now be applied to understand how the animal meets the requirements of fast and reliable manoeuvres in naturalistic situations.
神经系统通过神经元活动的变化来编码有关动态变化的感觉输入的信息。然而,神经元活动的变化也源于神经系统内外的噪声源或动物行为状态的变化。神经元反应在表征感觉刺激时产生的变异性限制了动物对刺激做出反应的可靠性,因此甚至可能影响某些情况下的生存机会。从感觉输入到行为反应的启动,已经对沿运动视觉通路不同阶段出现的相关噪声源进行了研究。在这里,我们专注于果蝇视觉运动信息处理的可靠性。果蝇依靠视觉运动信息来指导其运动。它们是处理视觉运动信息方面最成熟的模型系统之一,使我们能够弥合行为表现与潜在神经元计算之间的差距。已经有可能直接评估果蝇视觉运动处理系统主要阶段的噪声对神经元信号可靠性的影响。运动敏感神经元的反应及其变异性已与视动运动相关联,视动运动作为视觉运动计算整体性能的指标。我们探讨刺激中已经存在的噪声,例如视觉系统的光子噪声,是否以及如何影响后续处理阶段,以及感觉系统输出水平的变异性在多大程度上限制行为表现。现在应该应用电路分析的最新进展和监测行为动物神经元活动的进展,以了解动物如何在自然环境中满足快速可靠机动的要求。