Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex BN1 9RQ, UK.
Nature. 2013 Jan 10;493(7431):246-9. doi: 10.1038/nature11676. Epub 2012 Nov 25.
Impediments to DNA replication are known to induce gross chromosomal rearrangements (GCRs) and copy-number variations (CNVs). GCRs and CNVs underlie human genomic disorders and are a feature of cancer. During cancer development, environmental factors and oncogene-driven proliferation promote replication stress. Resulting GCRs and CNVs are proposed to contribute to cancer development and therapy resistance. When stress arrests replication, the replisome remains associated with the fork DNA (stalled fork) and is protected by the inter-S-phase checkpoint. Stalled forks efficiently resume when the stress is relieved. However, if the polymerases dissociate from the fork (fork collapse) or the fork structure breaks (broken fork), replication restart can proceed either by homologous recombination or microhomology-primed re-initiation. Here we ascertain the consequences of replication with a fork restarted by homologous recombination in fission yeast. We identify a new mechanism of chromosomal rearrangement through the observation that recombination-restarted forks have a considerably high propensity to execute a U-turn at small inverted repeats (up to 1 in 40 replication events). We propose that the error-prone nature of restarted forks contributes to the generation of GCRs and gene amplification in cancer, and to non-recurrent CNVs in genomic disorders.
已知 DNA 复制的障碍会诱导染色体大片段重排(GCR)和拷贝数变异(CNV)。GCR 和 CNV 是人类基因组疾病的基础,也是癌症的特征。在癌症发展过程中,环境因素和癌基因驱动的增殖会促进复制压力。由此产生的 GCR 和 CNV 被认为有助于癌症的发展和治疗耐药性。当压力阻止复制时,复制体仍然与叉 DNA (停滞叉)相关联,并受到间 S 期检查点的保护。当压力缓解时,停滞叉会有效地恢复。然而,如果聚合酶从叉上解离(叉崩溃)或叉结构断裂(断裂叉),复制可以通过同源重组或微同源引发重新起始来进行。在这里,我们在裂殖酵母中确定了通过同源重组重新启动复制的后果。我们通过观察到重组重新启动的叉在小反向重复序列(高达 1/40 复制事件)处进行显著高倾向的 U 型转弯来识别染色体重排的新机制。我们提出,重新启动的叉的易错性质有助于癌症中 GCR 和基因扩增的产生,以及基因组疾病中非重现性 CNV 的产生。