Suppr超能文献

Detection of oxygen-derived free radical generation in the canine postischemic heart during late phase of reperfusion.

作者信息

Kuzuya T, Hoshida S, Kim Y, Nishida M, Fuji H, Kitabatake A, Tada M, Kamada T

机构信息

First Department of Medicine, Osaka University School of Medicine, Japan.

出版信息

Circ Res. 1990 Apr;66(4):1160-5. doi: 10.1161/01.res.66.4.1160.

Abstract

To define the relation between oxygen-derived free radical (oxy-radical) generation in the reperfused ischemic myocardium and the progression of myocardial damage, we measured oxy-radical generation in the ischemic myocardium and the propagating infarct size in a model of canine coronary occlusion (90 minutes) and reperfusion. We used electron paramagnetic resonance spin-trapping techniques (5,5-dimethyl-1-pyrroline N-oxide [DMPO]) to detect oxy-radicals in the rapidly frozen myocardial samples taken by needle biopsy. There was no detectable generation of DMPO adducts in the normal myocardium before or after reperfusion. In the reperfused ischemic myocardium, electron paramagnetic resonance signals of DMPO-OOH (superoxide anion) and DMPO-OH (hydroxyl radical) were detected, with peak concentrations at 1 hour after reperfusion for DMPO-OOH and at 3 hours after reperfusion for DMPO-OH, respectively. These DMPO adducts were also detected during the early phase (15 seconds) of reperfusion, but the concentrations of these signals were much less than those during the late phase of reperfusion. Treatment with human recombinant superoxide dismutase (2.5 mg/kg/hr) and catalase (2.5 mg/kg/hr) during the course of experiments abolished DMPO-OOH formation but had little effect on DMPO-OH formation. Infarct size (percent of risk area infarcted), quantified by a dual staining method with Evans blue dye and triphenyltetrazolium chloride, was 18.3 +/- 4.8% (mean +/- SEM) at 90 minutes of occlusion. After 5 hours of reperfusion, infarct size increased to 43.6 +/- 7.2%. These results indicate that a greater magnitude of oxy-radical generation was sustained in the ischemic myocardial tissue during the late phase (1-3 hours) of reperfusion, associated with the progression of myocardial infarction. The concurrent appearance of oxy-radicals and progressive infarction may support the view that a chain reaction of oxy-radicals contributes to the propagation of myocardial cell damage in the postischemic heart.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验