Suppr超能文献

在生理变量重组补料分批过程中实时估计生物量和比生长速率。

Real-time estimation of biomass and specific growth rate in physiologically variable recombinant fed-batch processes.

机构信息

Research Area Biochemical Engineering, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Straße 1a, 1060 Vienna, Austria.

出版信息

Bioprocess Biosyst Eng. 2013 Sep;36(9):1205-18. doi: 10.1007/s00449-012-0848-4. Epub 2012 Nov 23.

Abstract

The real-time measurement of biomass has been addressed since many years. The quantification of biomass in the induction phase of a recombinant bioprocess is not straight forward, since biological burden, caused by protein expression, can have a significant impact on the cell morphology and physiology. This variability potentially leads to poor generalization of the biomass estimation, hence is a very important issue in the dynamic field of process development with frequently changing processes and producer lines. We want to present a method to quantify "biomass" in real-time which avoids off-line sampling and the need for representative training data sets. This generally applicable soft-sensor, based on first principles, was used for the quantification of biomass in induced recombinant fed-batch processes. Results were compared with "state of the art" methods to estimate the biomass concentration and the specific growth rate µ. Gross errors such as wrong stoichiometric assumptions or sensor failure were detected automatically. This method allows for variable model coefficients such as yields in contrast to other process models, hence does not require prior experiments. It can be easily adapted to a different growth stoichiometry; hence the method provides good generalization, also for induced culture mode. This approach estimates the biomass (or anabolic bioconversion) in induced fed-batch cultures in real-time and provides this key variable for process development for control purposes.

摘要

多年来,人们一直在研究生物量的实时测量。在重组生物过程的诱导阶段,生物量的定量并不是一件简单的事情,因为蛋白质表达引起的生物负荷会对细胞形态和生理学产生重大影响。这种可变性可能导致生物量估计的概括性较差,因此在频繁变化的过程和生产线上的动态过程开发领域是一个非常重要的问题。我们想提出一种实时定量“生物量”的方法,该方法避免了离线采样和对代表性训练数据集的需求。这种基于第一性原理的通用软传感器用于定量诱导的重组分批补料过程中的生物量。结果与“最先进”的方法进行了比较,以估计生物量浓度和比生长速率µ。自动检测到诸如错误的化学计量假设或传感器故障等粗大误差。与其他过程模型相比,该方法允许变量模型系数(例如产率),因此不需要事先进行实验。它可以轻松适应不同的生长化学计量;因此,该方法提供了很好的概括性,对于诱导培养模式也是如此。该方法实时估计诱导补料培养物中的生物量(或合成生物转化),并为控制目的提供该关键变量用于过程开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a17d/3755222/698df911cfc4/449_2012_848_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验