Laboratory of Bioprocess Engineering, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia.
Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
Sensors (Basel). 2021 Feb 10;21(4):1268. doi: 10.3390/s21041268.
Microbial biomass concentration is a key bioprocess parameter, estimated using various labor, operator and process cross-sensitive techniques, analyzed in a broad context and therefore the subject of correct interpretation. In this paper, the authors present the results of cell density estimation based on off-line (optical density, wet/dry cell weight concentration), (turbidity, permittivity), and soft-sensor (off-gas O/CO, alkali consumption) techniques. Cultivations were performed in a 5 L oxygen-enriched stirred tank bioreactor. The experimental plan determined varying aeration rates/levels, glycerol or methanol substrates, residual methanol levels, and temperature. In total, results from 13 up to 150 g (dry cell weight)/L cultivation runs were analyzed. Linear and exponential correlation models were identified for the turbidity sensor signal and dry cell weight concentration (DCW). Evaluated linear correlation between permittivity and DCW in the glycerol consumption phase (<60 g/L) and medium (for Mut strain) to significant (for Mut strain) linearity decline for methanol consumption phase. DCW and permittivity-based biomass estimates used for soft-sensor parameters identification. Dataset consisting from 4 Mut strain cultivation experiments used for estimation quality (expressed in NRMSE) comparison for turbidity-based (8%), permittivity-based (11%), O uptake-based (10%), CO production-based (13%), and alkali consumption-based (8%) biomass estimates. Additionally, the authors present a novel solution (algorithm) for uncommon turbidity and permittivity sensor signal shift (caused by the intensive stirrer rate change and antifoam agent addition) on-line identification and minimization. The sensor signal filtering method leads to about 5-fold and 2-fold minimized biomass estimate drifts for turbidity- and permittivity-based biomass estimates, respectively.
微生物生物量浓度是一个关键的生物过程参数,使用各种劳动力、操作员和过程交叉敏感技术进行估计,在广泛的背景下进行分析,因此需要正确解释。在本文中,作者介绍了基于离线(光密度、湿/干细胞重量浓度)、(浊度、介电常数)和软传感器(废气 O/CO、碱消耗)技术的细胞密度估计结果。培养在 5L 富氧搅拌罐生物反应器中进行。实验方案确定了不同的曝气率/水平、甘油或甲醇基质、残留甲醇水平和温度。总共分析了 13 到 150g(干细胞重量)/L 培养运行的结果。确定了浊度传感器信号和干细胞重量浓度(DCW)的线性和指数相关模型。在甘油消耗阶段(<60g/L)和介质(Mut 菌株)中评估了介电常数与 DCW 的线性相关性,对于甲醇消耗阶段,线性相关性显著下降。基于 DCW 和介电常数的生物量估计用于软传感器参数识别。由 4 个 Mut 菌株培养实验组成的数据集用于浊度(8%)、介电常数(11%)、O 吸收(10%)、CO 产生(13%)和碱消耗(8%)生物量估计的估计质量(以 NRMSE 表示)比较。此外,作者还提出了一种新颖的解决方案(算法),用于在线识别和最小化不常见的浊度和介电常数传感器信号偏移(由剧烈搅拌器转速变化和消泡剂添加引起)。传感器信号滤波方法使浊度和介电常数生物量估计的生物量估计漂移分别减少了约 5 倍和 2 倍。