Suppr超能文献

腰椎压缩性骨折诊断:一个临床 CAD 系统。

Compression fracture diagnosis in lumbar: a clinical CAD system.

机构信息

University of Jordan, Amman 11942, Jordan.

出版信息

Int J Comput Assist Radiol Surg. 2013 May;8(3):461-9. doi: 10.1007/s11548-012-0796-0. Epub 2012 Nov 20.

Abstract

PURPOSE

Lower back pain affects 80-90 % of all people at some point during their life time, and it is considered as the second most neurological ailment after headache. It is caused by defects in the discs, vertebrae, or the soft tissues. Radiologists perform diagnosis mainly from X-ray radiographs, MRI, or CT depending on the target organ. Vertebra fracture is usually diagnosed from X-ray radiographs or CT depending on the available technology. In this paper, we propose a fully automated Computer-Aided Diagnosis System (CAD) for the diagnosis of vertebra wedge compression fracture from CT images that integrates within the clinical routine.

METHODS

We perform vertebrae localization and labeling, segment the vertebrae, and then diagnose each vertebra. We perform labeling and segmentation via coordinated system that consists of an Active Shape Model and a Gradient Vector Flow Active Contours (GVF-Snake). We propose a set of clinically motivated features that distinguish the fractured vertebra. We provide two machine learning solutions that utilize our features including a supervised learner (Neural Networks (NN)) and an unsupervised learner (K-Means).

RESULTS

We validate our method on a set of fifty (thirty abnormal) Computed Tomography (CT) cases obtained from our collaborating radiology center. Our diagnosis detection accuracy using NN is 93.2 % on average while we obtained 98 % diagnosis accuracy using K-Means. Our K-Means resulted in a specificity of 87.5 % and sensitivity over 99 %.

CONCLUSIONS

We presented a fully automated CAD system that seamlessly integrates within the clinical work flow of the radiologist. Our clinically motivated features resulted in a great performance of both the supervised and unsupervised learners that we utilize to validate our CAD system. Our CAD system results are promising to serve in clinical applications after extensive validation.

摘要

目的

下腰痛影响 80-90%的人在他们的生命中的某个时刻,它被认为是仅次于头痛的第二大神经系统疾病。它是由椎间盘、椎体或软组织的缺陷引起的。放射科医生主要根据目标器官从 X 射线、MRI 或 CT 进行诊断。椎体骨折通常根据可用技术从 X 射线或 CT 诊断。在本文中,我们提出了一种完全自动化的计算机辅助诊断系统 (CAD),用于从 CT 图像诊断椎体楔形压缩骨折,该系统集成在临床常规中。

方法

我们进行椎体定位和标记,分割椎体,然后诊断每个椎体。我们通过由主动形状模型和梯度向量流主动轮廓(GVF-Snake)组成的协调系统进行标记和分割。我们提出了一组临床上有区别的特征来区分骨折的椎体。我们提供了两种利用我们的特征的机器学习解决方案,包括有监督的学习者(神经网络(NN))和无监督的学习者(K-Means)。

结果

我们在从合作放射科中心获得的五十(三十个异常)个计算机断层扫描(CT)病例集中验证了我们的方法。我们使用 NN 的诊断检测准确率平均为 93.2%,而使用 K-Means 的诊断准确率为 98%。我们的 K-Means 得到了 87.5%的特异性和超过 99%的敏感性。

结论

我们提出了一种完全自动化的 CAD 系统,它无缝地集成在放射科医生的临床工作流程中。我们的临床有区别的特征为我们利用的有监督和无监督学习者提供了出色的性能,以验证我们的 CAD 系统。我们的 CAD 系统结果有望在经过广泛验证后用于临床应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验