Suppr超能文献

LabCaS:使用条件随机场从氨基酸序列标记钙蛋白酶底物裂解位点。

LabCaS: labeling calpain substrate cleavage sites from amino acid sequence using conditional random fields.

机构信息

Department of Automation, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.

出版信息

Proteins. 2013 Apr;81(4):622-34. doi: 10.1002/prot.24217. Epub 2012 Dec 24.

Abstract

The calpain family of Ca(2+) -dependent cysteine proteases plays a vital role in many important biological processes which is closely related with a variety of pathological states. Activated calpains selectively cleave relevant substrates at specific cleavage sites, yielding multiple fragments that can have different functions from the intact substrate protein. Until now, our knowledge about the calpain functions and their substrate cleavage mechanisms are limited because the experimental determination and validation on calpain binding are usually laborious and expensive. In this work, we aim to develop a new computational approach (LabCaS) for accurate prediction of the calpain substrate cleavage sites from amino acid sequences. To overcome the imbalance of negative and positive samples in the machine-learning training which have been suffered by most of the former approaches when splitting sequences into short peptides, we designed a conditional random field algorithm that can label the potential cleavage sites directly from the entire sequences. By integrating the multiple amino acid features and those derived from sequences, LabCaS achieves an accurate recognition of the cleave sites for most calpain proteins. In a jackknife test on a set of 129 benchmark proteins, LabCaS generates an AUC score 0.862. The LabCaS program is freely available at: http://www.csbio.sjtu.edu.cn/bioinf/LabCaS. Proteins 2013. © 2012 Wiley Periodicals, Inc.

摘要

钙蛋白酶家族是一类依赖钙离子的半胱氨酸蛋白酶,在许多重要的生物学过程中发挥着重要作用,这些过程与多种病理状态密切相关。激活的钙蛋白酶选择性地在特定切割位点切割相关底物,生成多个片段,这些片段的功能与完整底物蛋白不同。到目前为止,我们对钙蛋白酶功能及其底物切割机制的了解还很有限,因为钙蛋白酶结合的实验测定和验证通常既费力又昂贵。在这项工作中,我们旨在开发一种新的计算方法(LabCaS),从氨基酸序列中准确预测钙蛋白酶的底物切割位点。为了克服机器学习训练中正负样本不平衡的问题,大多数之前的方法在将序列分割成短肽时都会遇到这个问题,我们设计了一种条件随机场算法,可以直接从整个序列中标记潜在的切割位点。通过整合多种氨基酸特征和源自序列的特征,LabCaS 能够准确识别大多数钙蛋白酶蛋白的切割位点。在一组 129 个基准蛋白的交叉验证测试中,LabCaS 生成的 AUC 评分为 0.862。LabCaS 程序可免费获取:http://www.csbio.sjtu.edu.cn/bioinf/LabCaS。《蛋白质》2013 年。版权所有©2012 约翰威立父子公司。

相似文献

1
LabCaS: labeling calpain substrate cleavage sites from amino acid sequence using conditional random fields.
Proteins. 2013 Apr;81(4):622-34. doi: 10.1002/prot.24217. Epub 2012 Dec 24.
2
LabCaS for Ranking Potential Calpain Substrate Cleavage Sites from Amino Acid Sequence.
Methods Mol Biol. 2019;1915:111-120. doi: 10.1007/978-1-4939-8988-1_10.
4
Understanding the substrate specificity of conventional calpains.
Biol Chem. 2012 Sep;393(9):853-71. doi: 10.1515/hsz-2012-0143.
5
Calpain cleavage prediction using multiple kernel learning.
PLoS One. 2011 May 3;6(5):e19035. doi: 10.1371/journal.pone.0019035.
7
PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.
PLoS One. 2012;7(11):e50300. doi: 10.1371/journal.pone.0050300. Epub 2012 Nov 29.
8
SVM-based prediction of the calpain degradome using Bayes Feature Extraction.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5534-40. doi: 10.1109/EMBC.2012.6347248.
9
GPS-CCD: a novel computational program for the prediction of calpain cleavage sites.
PLoS One. 2011 Apr 20;6(4):e19001. doi: 10.1371/journal.pone.0019001.
10
CalCleaveMKL: a Tool for Calpain Cleavage Prediction.
Methods Mol Biol. 2019;1915:121-147. doi: 10.1007/978-1-4939-8988-1_11.

引用本文的文献

1
DiCleave: a deep learning model for predicting human Dicer cleavage sites.
BMC Bioinformatics. 2024 Jan 9;25(1):13. doi: 10.1186/s12859-024-05638-4.
2
3
ReCGBM: a gradient boosting-based method for predicting human dicer cleavage sites.
BMC Bioinformatics. 2021 Feb 10;22(1):63. doi: 10.1186/s12859-021-03993-0.
4
Identifying the Zoonotic Origin of SARS-CoV-2 by Modeling the Binding Affinity between the Spike Receptor-Binding Domain and Host ACE2.
J Proteome Res. 2020 Dec 4;19(12):4844-4856. doi: 10.1021/acs.jproteome.0c00717. Epub 2020 Nov 11.
6
Procleave: Predicting Protease-specific Substrate Cleavage Sites by Combining Sequence and Structural Information.
Genomics Proteomics Bioinformatics. 2020 Feb;18(1):52-64. doi: 10.1016/j.gpb.2019.08.002. Epub 2020 May 12.
7
DeepCleave: a deep learning predictor for caspase and matrix metalloprotease substrates and cleavage sites.
Bioinformatics. 2020 Feb 15;36(4):1057-1065. doi: 10.1093/bioinformatics/btz721.
8
Precise Prediction of Calpain Cleavage Sites and Their Aberrance Caused by Mutations in Cancer.
Front Genet. 2019 Aug 8;10:715. doi: 10.3389/fgene.2019.00715. eCollection 2019.
10
Calpain research for drug discovery: challenges and potential.
Nat Rev Drug Discov. 2016 Dec;15(12):854-876. doi: 10.1038/nrd.2016.212. Epub 2016 Nov 11.

本文引用的文献

1
Calpains mediate epithelial-cell death during mammary gland involution: mitochondria and lysosomal destabilization.
Cell Death Differ. 2012 Sep;19(9):1536-48. doi: 10.1038/cdd.2012.46. Epub 2012 May 4.
3
Improving the prediction of disulfide bonds in Eukaryotes with machine learning methods and protein subcellular localization.
Bioinformatics. 2011 Aug 15;27(16):2224-30. doi: 10.1093/bioinformatics/btr387. Epub 2011 Jun 29.
4
Calpain cleavage prediction using multiple kernel learning.
PLoS One. 2011 May 3;6(5):e19035. doi: 10.1371/journal.pone.0019035.
5
GPS-CCD: a novel computational program for the prediction of calpain cleavage sites.
PLoS One. 2011 Apr 20;6(4):e19001. doi: 10.1371/journal.pone.0019001.
6
The calpain system and cancer.
Nat Rev Cancer. 2011 May;11(5):364-74. doi: 10.1038/nrc3050.
8
Stat3 controls lysosomal-mediated cell death in vivo.
Nat Cell Biol. 2011 Mar;13(3):303-9. doi: 10.1038/ncb2171. Epub 2011 Feb 20.
9
PredCSF: an integrated feature-based approach for predicting conotoxin superfamily.
Protein Pept Lett. 2011 Mar;18(3):261-7. doi: 10.2174/092986611794578341.
10
I-TASSER: a unified platform for automated protein structure and function prediction.
Nat Protoc. 2010 Apr;5(4):725-38. doi: 10.1038/nprot.2010.5. Epub 2010 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验