Kumar Vivek A, Brewster Luke P, Caves Jeffrey M, Chaikof Elliot L
Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332.
Cardiovasc Eng Technol. 2011 Sep 1;2(3):137-148. doi: 10.1007/s13239-011-0049-3.
Vascular disease results in the decreased utility and decreased availability of autologus vascular tissue for small diameter (< 6 mm) vessel replacements. While synthetic polymer alternatives to date have failed to meet the performance of autogenous conduits, tissue-engineered replacement vessels represent an ideal solution to this clinical problem. Ongoing progress requires combined approaches from biomaterials science, cell biology, and translational medicine to develop feasible solutions with the requisite mechanical support, a non-fouling surface for blood flow, and tissue regeneration. Over the past two decades interest in blood vessel tissue engineering has soared on a global scale, resulting in the first clinical implants of multiple technologies, steady progress with several other systems, and critical lessons-learned. This review will highlight the current inadequacies of autologus and synthetic grafts, the engineering requirements for implantation of tissue-engineered grafts, and the current status of tissue-engineered blood vessel research.
血管疾病导致自体血管组织用于小直径(<6毫米)血管置换的效用降低且可用性减少。尽管迄今为止合成聚合物替代品未能达到自体血管的性能,但组织工程化置换血管是解决这一临床问题的理想方案。持续的进展需要生物材料科学、细胞生物学和转化医学的联合方法,以开发具有必要机械支撑、无血栓形成的血流表面和组织再生功能的可行解决方案。在过去二十年中,全球范围内对血管组织工程的兴趣激增,导致多种技术首次进行临床植入,其他几个系统也取得了稳步进展,并吸取了重要经验教训。本综述将重点介绍自体移植物和合成移植物目前存在的不足、组织工程化移植物植入的工程要求以及组织工程化血管研究的现状。