Suppr超能文献

血管组织工程:功能需求、进展与未来挑战

Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges.

作者信息

Kumar Vivek A, Brewster Luke P, Caves Jeffrey M, Chaikof Elliot L

机构信息

Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332.

出版信息

Cardiovasc Eng Technol. 2011 Sep 1;2(3):137-148. doi: 10.1007/s13239-011-0049-3.

Abstract

Vascular disease results in the decreased utility and decreased availability of autologus vascular tissue for small diameter (< 6 mm) vessel replacements. While synthetic polymer alternatives to date have failed to meet the performance of autogenous conduits, tissue-engineered replacement vessels represent an ideal solution to this clinical problem. Ongoing progress requires combined approaches from biomaterials science, cell biology, and translational medicine to develop feasible solutions with the requisite mechanical support, a non-fouling surface for blood flow, and tissue regeneration. Over the past two decades interest in blood vessel tissue engineering has soared on a global scale, resulting in the first clinical implants of multiple technologies, steady progress with several other systems, and critical lessons-learned. This review will highlight the current inadequacies of autologus and synthetic grafts, the engineering requirements for implantation of tissue-engineered grafts, and the current status of tissue-engineered blood vessel research.

摘要

血管疾病导致自体血管组织用于小直径(<6毫米)血管置换的效用降低且可用性减少。尽管迄今为止合成聚合物替代品未能达到自体血管的性能,但组织工程化置换血管是解决这一临床问题的理想方案。持续的进展需要生物材料科学、细胞生物学和转化医学的联合方法,以开发具有必要机械支撑、无血栓形成的血流表面和组织再生功能的可行解决方案。在过去二十年中,全球范围内对血管组织工程的兴趣激增,导致多种技术首次进行临床植入,其他几个系统也取得了稳步进展,并吸取了重要经验教训。本综述将重点介绍自体移植物和合成移植物目前存在的不足、组织工程化移植物植入的工程要求以及组织工程化血管研究的现状。

相似文献

1
Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges.
Cardiovasc Eng Technol. 2011 Sep 1;2(3):137-148. doi: 10.1007/s13239-011-0049-3.
2
Tissue engineered small-diameter vascular grafts.
Clin Plast Surg. 2003 Oct;30(4):507-17. doi: 10.1016/s0094-1298(03)00069-5.
3
Considerations in the Development of Small-Diameter Vascular Graft as an Alternative for Bypass and Reconstructive Surgeries: A Review.
Cardiovasc Eng Technol. 2020 Oct;11(5):495-521. doi: 10.1007/s13239-020-00482-y. Epub 2020 Aug 18.
4
History, progress and future challenges of artificial blood vessels: a narrative review.
Biomater Transl. 2022 Mar 28;3(1):81-98. doi: 10.12336/biomatertransl.2022.01.008. eCollection 2022.
5
Creation of viable pulmonary artery autografts through tissue engineering.
J Thorac Cardiovasc Surg. 1998 Mar;115(3):536-45; discussion 545-6. doi: 10.1016/S0022-5223(98)70315-0.
6
Tissue engineering of blood vessel.
J Cell Mol Med. 2007 Sep-Oct;11(5):945-57. doi: 10.1111/j.1582-4934.2007.00099.x.
7
Vascular tissue engineering: from in vitro to in situ.
Wiley Interdiscip Rev Syst Biol Med. 2014 Jan-Feb;6(1):61-76. doi: 10.1002/wsbm.1246. Epub 2013 Oct 22.
8
Vascular Tissue Engineering: Challenges and Requirements for an Ideal Large Scale Blood Vessel.
Front Bioeng Biotechnol. 2021 Oct 4;9:721843. doi: 10.3389/fbioe.2021.721843. eCollection 2021.
9
Engineering blood vessels and vascularized tissues: technology trends and potential clinical applications.
Clin Sci (Lond). 2019 May 14;133(9):1115-1135. doi: 10.1042/CS20180155. Print 2019 May 15.
10
Current Strategies for the Manufacture of Small Size Tissue Engineering Vascular Grafts.
Front Bioeng Biotechnol. 2018 Apr 17;6:41. doi: 10.3389/fbioe.2018.00041. eCollection 2018.

引用本文的文献

3
Advances and Challenges of Tissue Vascular Scaffolds and Supercritical Carbon Dioxide Technology in Cardiovascular Diseases.
Tissue Eng Regen Med. 2025 Apr;22(3):273-284. doi: 10.1007/s13770-025-00710-3. Epub 2025 Mar 3.
4
Biomaterial-assisted organoid technology for disease modeling and drug screening.
Mater Today Bio. 2024 Dec 31;30:101438. doi: 10.1016/j.mtbio.2024.101438. eCollection 2025 Feb.
6
Integrating Fused Deposition Modeling and Melt Electrowriting for Engineering Branched Vasculature.
Biomedicines. 2023 Nov 24;11(12):3139. doi: 10.3390/biomedicines11123139.
7
Enhancing decellularized vascular scaffolds with PVDF and PCL reinforcement: a fused deposition modeling approach.
Front Cardiovasc Med. 2023 Nov 29;10:1257812. doi: 10.3389/fcvm.2023.1257812. eCollection 2023.
9
Current Strategies for Engineered Vascular Grafts and Vascularized Tissue Engineering.
Polymers (Basel). 2023 Apr 24;15(9):2015. doi: 10.3390/polym15092015.
10
Biodegradable, Self-Reinforcing Vascular Grafts for In Situ Tissue Engineering Approaches.
Adv Healthc Mater. 2023 Sep;12(23):e2300520. doi: 10.1002/adhm.202300520. Epub 2023 May 21.

本文引用的文献

1
Results of a seven-year, single-centre experience of the long-term outcomes of bovine ureter grafts used as novel conduits for haemodialysis fistulas.
Cardiovasc Intervent Radiol. 2011 Oct;34(5):958-63. doi: 10.1007/s00270-011-0096-z. Epub 2011 Mar 1.
2
Readily available tissue-engineered vascular grafts.
Sci Transl Med. 2011 Feb 2;3(68):68ra9. doi: 10.1126/scitranslmed.3001426.
3
Circulating smooth muscle progenitor cells in arterial remodeling.
J Mol Cell Cardiol. 2011 Feb;50(2):273-9. doi: 10.1016/j.yjmcc.2010.10.030. Epub 2010 Nov 1.
4
Vascular smooth muscle enhances functionality of tissue-engineered blood vessels in vivo.
J Vasc Surg. 2011 Feb;53(2):426-34. doi: 10.1016/j.jvs.2010.07.054.
6
Macrophage differentiation and polarization on a decellularized pericardial biomaterial.
Biomaterials. 2011 Jan;32(2):439-49. doi: 10.1016/j.biomaterials.2010.09.004. Epub 2010 Oct 12.
8
Effect of decellularization protocol on the mechanical behavior of porcine descending aorta.
Int J Biomater. 2010;2010. doi: 10.1155/2010/620503. Epub 2010 Jul 4.
9
A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties.
Acta Biomater. 2011 Jan;7(1):295-303. doi: 10.1016/j.actbio.2010.07.022. Epub 2010 Jul 23.
10
The use of microfiber composites of elastin-like protein matrix reinforced with synthetic collagen in the design of vascular grafts.
Biomaterials. 2010 Sep;31(27):7175-82. doi: 10.1016/j.biomaterials.2010.05.014. Epub 2010 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验