Devillard Chloé D, Marquette Christophe A
3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France.
Front Bioeng Biotechnol. 2021 Oct 4;9:721843. doi: 10.3389/fbioe.2021.721843. eCollection 2021.
Since the emergence of regenerative medicine and tissue engineering more than half a century ago, one obstacle has persisted: the creation of large-scale vascular tissue (>1 cm) to meet the clinical needs of viable tissue grafts but also for biological research applications. Considerable advancements in biofabrication have been made since Weinberg and Bell, in 1986, created the first blood vessel from collagen, endothelial cells, smooth muscle cells and fibroblasts. The synergistic combination of advances in fabrication methods, availability of cell source, biomaterials formulation and vascular tissue development, promises new strategies for the creation of autologous blood vessels, recapitulating biological functions, structural functions, but also the mechanical functions of a native blood vessel. In this review, the main technological advancements in bio-fabrication are discussed with a particular highlights on 3D bioprinting technologies. The choice of the main biomaterials and cell sources, the use of dynamic maturation systems such as bioreactors and the associated clinical trials will be detailed. The remaining challenges in this complex engineering field will finally be discussed.
自半个多世纪前再生医学和组织工程学出现以来,一个障碍一直存在:制造大规模血管组织(>1厘米),以满足活体组织移植的临床需求,同时也满足生物学研究应用的需求。自1986年温伯格和贝尔用胶原蛋白、内皮细胞、平滑肌细胞和成纤维细胞制造出第一条血管以来,生物制造领域取得了相当大的进展。制造方法的进步、细胞来源的可用性、生物材料配方和血管组织发育的协同结合,有望为制造自体血管带来新策略,重现天然血管的生物学功能、结构功能以及机械功能。在这篇综述中,将讨论生物制造的主要技术进步,特别强调3D生物打印技术。还将详细介绍主要生物材料和细胞来源的选择、生物反应器等动态成熟系统的使用以及相关的临床试验。最后将讨论这个复杂工程领域中仍然存在的挑战。