Suppr超能文献

通过钯催化芳基化反应生成末端芳基的 Si(111) 和 Ge(111) 表面的新方法。

A new method to generate arene-terminated Si(111) and Ge(111) surfaces via a palladium-catalyzed arylation reaction.

机构信息

Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

出版信息

J Am Chem Soc. 2012 Dec 19;134(50):20433-9. doi: 10.1021/ja308606t. Epub 2012 Dec 10.

Abstract

Formation of silicon-aryl and germanium-aryl direct bonds on the semiconductor surface is a key issue to realize molecular electronic devices, but the conventional methods based on radical intermediates have problems to accompany the side reactions. We developed the first example of versatile and efficient methods to form clean organic monolayers with Si-aryl and Ge-aryl bonds on hydrogen-terminated silicon and germanium surfaces by applying our original catalytic arylation reactions of hydrosilanes and hydrogermanes using Pd catalyst and base in homogeneous systems. We could immobilize aromatic groups with redox-active and photoluminescent properties, and further applied in the field of rigid π-conjugated redox molecular wire composites, as confirmed by the successive coordination of terpyridine molecules with transition metal ions. The surfaces were characterized using cyclic voltammetry (CV), water contact angle measurements, X-ray photoelectron spectroscopy (XPS), fluorescence spectroscopy, and atomic force microscopy (AFM). Especially, the AFM analysis of 17 nm-long metal complex molecular wires confirmed their vertical connection to the plane surface.

摘要

在半导体表面上形成硅-芳基和锗-芳基直接键是实现分子电子器件的关键问题,但基于自由基中间体的传统方法存在伴随副反应的问题。我们通过在均相体系中使用 Pd 催化剂和碱,开发了首例用于在氢终止的硅和锗表面上形成具有 Si-芳基和 Ge-芳基键的清洁有机单层的通用且有效的方法。我们可以固定具有氧化还原活性和光致发光性质的芳基基团,并进一步应用于刚性 π 共轭氧化还原分子线复合材料领域,这一点通过过渡金属离子与三联吡啶分子的连续配位得到了证实。使用循环伏安法(CV)、水接触角测量、X 射线光电子能谱(XPS)、荧光光谱和原子力显微镜(AFM)对表面进行了表征。特别是,对 17nm 长金属配合物分子线的 AFM 分析证实了它们与平面表面的垂直连接。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验