Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany.
Trends Cell Biol. 2013 Feb;23(2):72-80. doi: 10.1016/j.tcb.2012.10.009. Epub 2012 Nov 23.
Nearly every cell type exhibits some form of polarity, yet the molecular mechanisms vary widely. Here we examine what we term 'chemical systems' where cell polarization arises through biochemical interactions in signaling pathways, 'mechanical systems' where cells polarize due to forces, stresses and transport, and 'mechanochemical systems' where polarization results from interplay between mechanics and chemical signaling. To reveal potentially unifying principles, we discuss mathematical conceptualizations of several prototypical examples. We suggest that the concept of local activation and global inhibition - originally developed to explain spatial patterning in reaction-diffusion systems - provides a framework for understanding many cases of cell polarity. Importantly, we find that the core ingredients in this framework - symmetry breaking, self-amplifying feedback, and long-range inhibition - involve processes that can be chemical, mechanical, or even mechanochemical in nature.
几乎每种细胞类型都表现出某种形式的极性,但分子机制却差异很大。在这里,我们研究了我们所谓的“化学系统”,其中细胞通过信号通路中的生化相互作用产生极化,“力学系统”中细胞由于力、应力和运输而极化,以及“力化学系统”中极化是由于力学和化学信号相互作用产生的。为了揭示潜在的统一原则,我们讨论了几个典型范例的数学概念化。我们认为,局部激活和全局抑制的概念——最初是为了解释反应扩散系统中的空间模式——为理解许多细胞极性的情况提供了一个框架。重要的是,我们发现,这个框架的核心成分——对称破缺、自我放大反馈和远程抑制——涉及到的过程可以是化学的、力学的,甚至是力化学的。