Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
J Exp Bot. 2013 Jan;64(1):355-67. doi: 10.1093/jxb/ers341. Epub 2012 Nov 26.
Phosphorus (P) nutrition is always a key issue regarding plants responses to elevated CO(2). Yet it is unclear of how elevated CO(2) affects P uptake under different nitrogen (N) forms. This study investigated the influence of elevated CO(2) (800 µl l(-1)) on P uptake and utilization by Arabidopsis grown in pH-buffered phosphate (P)-deficient (0.5 µM) hydroponic culture supplying with 2mM nitrate (NO(3)(-)) or ammonium (NH(4)(+)). After 7 d treatment, elevated CO(2) enhanced the biomass production of both NO(3)(-)- and NH(4) (+)-fed plants but decreased the P amount absorbed per weight of roots and the P concentration in the shoots of plants supplied with NH(4)(+). In comparison, elevated CO(2) increased the amount of P absorbed per weight of roots, as well as the P concentration in plants and alleviated P deficiency-induced symptoms of plants supplied with NO(3)(-). Elevated CO(2) also increased the root/shoot ratio, total root surface area, and acid phosphatase activity, and enhanced the expression of genes or transcriptional factors involving in P uptake, allocation and remobilization in P deficient plants. Furthermore, elevated CO(2) increased the nitric oxide (NO) level in roots of NO(3)(-)-fed plants but decreased it in NH(4)(+)-fed plants. NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) inhibited plant P acquisition by roots under elevated CO(2). Considering all of these findings, this study concluded that a combination of elevated CO(2) and NO(3)(-) nutrition can induce a set of plant adaptive strategies to improve P status from P-deficient soluble sources and that NO may be a signalling molecule that controls these processes.
磷(P)营养一直是植物对升高的 CO₂响应的关键问题。然而,升高的 CO₂如何影响不同氮(N)形式下的 P 吸收尚不清楚。本研究调查了升高的 CO₂(800 µl l⁻¹)对在 pH 缓冲的缺磷(0.5 µM)水培培养液中生长的拟南芥的 P 吸收和利用的影响,培养液中提供 2mM 硝酸盐(NO₃⁻)或铵(NH₄⁺)。经过 7 d 处理,升高的 CO₂增强了 NO₃⁻和 NH₄⁺供应的植物的生物量生产,但降低了 NH₄⁺供应的植物每根重吸收的 P 量和地上部的 P 浓度。相比之下,升高的 CO₂增加了每根重吸收的 P 量,以及植物中的 P 浓度,并缓解了供应 NO₃⁻的植物的 P 缺乏诱导的症状。升高的 CO₂还增加了根/茎比、总根表面积和酸性磷酸酶活性,并增强了参与 P 吸收、分配和再利用的基因或转录因子的表达在 P 缺乏的植物中。此外,升高的 CO₂增加了供应 NO₃⁻的植物根部的一氧化氮(NO)水平,但降低了供应 NH₄⁺的植物根部的 NO 水平。NO 清除剂 2-(4-羧基苯基)-4,4,5,5-四甲基咪唑啉-1-氧-3-氧化物(cPTIO)抑制了根在升高的 CO₂下的 P 吸收。考虑到所有这些发现,本研究得出结论,升高的 CO₂和 NO₃⁻营养的结合可以诱导一组植物适应策略,从 P 缺乏的可溶性来源中改善 P 状况,并且 NO 可能是控制这些过程的信号分子。