Suppr超能文献

拟渗压传感器拟南芥组氨酸激酶 1 在避脱水和低水势响应中的作用。

Role of the putative osmosensor Arabidopsis histidine kinase1 in dehydration avoidance and low-water-potential response.

机构信息

Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan.

出版信息

Plant Physiol. 2013 Feb;161(2):942-53. doi: 10.1104/pp.112.209791. Epub 2012 Nov 26.

Abstract

The molecular basis of plant osmosensing remains unknown. Arabidopsis (Arabidopsis thaliana) Histidine Kinase1 (AHK1) can complement the osmosensitivity of yeast (Saccharomyces cerevisiae) osmosensor mutants lacking Synthetic Lethal of N-end rule1 and SH3-containing Osmosensor and has been proposed to act as a plant osmosensor. We found that ahk1 mutants in either the Arabidopsis Nossen-0 or Columbia-0 background had increased stomatal density and stomatal index consistent with greater transpirational water loss. However, the growth of ahk1 mutants was not more sensitive to controlled moderate low water potential (ψ(w)) or to salt stress. Also, ahk1 mutants had increased, rather than reduced, solute accumulation across a range of low ψ(w) severities. ahk1 mutants had reduced low ψ(w) induction of Δ(1)-Pyrroline-5-Carboxylate Synthetase1 (P5CS1) and 9-cis-Epoxycarotenoid Dioxygenase3, which encode rate-limiting enzymes in proline and abscisic acid (ABA) synthesis, respectively. However, neither Pro nor ABA accumulation was reduced in ahk1 mutants at low ψ(w). P5CS1 protein level was not reduced in ahk1 mutants. This indicated that proline accumulation was regulated in part by posttranscriptional control of P5CS1 that was not affected by AHK1. Expression of AHK1 itself was reduced by low ψ(w), in contrast to previous reports. These results define a role of AHK1 in controlling stomatal density and the transcription of stress-responsive genes. These phenotypes may be mediated in part by reduced ABA sensitivity. More rapid transpiration and water depletion can also explain the previously reported sensitivity of ahk1 to uncontrolled soil drying. The unimpaired growth, ABA, proline, and solute accumulation of ahk1 mutants at low ψ(w) suggest that AHK1 may not be the main plant osmosensor required for low ψ(w) tolerance.

摘要

植物渗透压感应的分子基础尚不清楚。拟南芥(Arabidopsis thaliana)组氨酸激酶 1(AHK1)可以补充酵母(Saccharomyces cerevisiae)渗透压传感器突变体中缺乏合成致死的 N 端规则 1 和包含 SH3 的渗透压传感器的渗透压敏感性,并且已被提议作为植物渗透压传感器。我们发现,无论是在 Nossen-0 还是哥伦比亚-0 背景下的 ahk1 突变体,其气孔密度和气孔指数都增加了,这与蒸腾水损失增加一致。然而,ahk1 突变体的生长对受控的中度低水势(ψ(w))或盐胁迫并不更敏感。此外,ahk1 突变体在一系列低 ψ(w)严重程度下的溶质积累增加,而不是减少。ahk1 突变体在低 ψ(w)下诱导的Δ(1)-吡咯啉-5-羧酸合成酶 1(P5CS1)和 9-顺式-环氧类胡萝卜素双加氧酶 3 的表达减少,这两种酶分别编码脯氨酸和脱落酸(ABA)合成的限速酶。然而,在低 ψ(w)下,ahk1 突变体中的 Pro 或 ABA 积累并没有减少。ahk1 突变体中的 P5CS1 蛋白水平没有降低。这表明脯氨酸积累部分受到 P5CS1 的转录后控制,而不受 AHK1 的影响。与之前的报道相反,ahk1 的表达本身在低 ψ(w)下减少。这些结果定义了 AHK1 在控制气孔密度和应激响应基因转录中的作用。这些表型可能部分是通过降低 ABA 敏感性介导的。更快的蒸腾作用和水分耗竭也可以解释之前报道的 ahk1 对不受控制的土壤干燥的敏感性。ahk1 突变体在低 ψ(w)下不受损害的生长、ABA、脯氨酸和溶质积累表明,AHK1 可能不是低 ψ(w)耐受性所必需的主要植物渗透压传感器。

相似文献

1
Role of the putative osmosensor Arabidopsis histidine kinase1 in dehydration avoidance and low-water-potential response.
Plant Physiol. 2013 Feb;161(2):942-53. doi: 10.1104/pp.112.209791. Epub 2012 Nov 26.
2
Stress physiology functions of the Arabidopsis histidine kinase cytokinin receptors.
Physiol Plant. 2015 Jul;154(3):369-80. doi: 10.1111/ppl.12290. Epub 2014 Nov 3.
4
Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis.
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20623-8. doi: 10.1073/pnas.0706547105. Epub 2007 Dec 12.
5
Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential.
Plant Physiol. 2011 Sep;157(1):292-304. doi: 10.1104/pp.111.183210. Epub 2011 Jul 26.
8
Functional characterization of an abiotic stress-inducible transcription factor AtERF53 in Arabidopsis thaliana.
Plant Mol Biol. 2013 Jun;82(3):223-37. doi: 10.1007/s11103-013-0054-z. Epub 2013 Apr 28.
10
Proline Accumulation Is Regulated by Transcription Factors Associated with Phosphate Starvation.
Plant Physiol. 2017 Sep;175(1):555-567. doi: 10.1104/pp.17.00791. Epub 2017 Aug 1.

引用本文的文献

1
Non-Canonical Inter-Protein Interactions of Key Proteins Belonging to Cytokinin Signaling Pathways.
Plants (Basel). 2025 May 15;14(10):1485. doi: 10.3390/plants14101485.
2
The Arabidopsis PM19L1 Protein Functions as a Regulator of Germination Under Osmotic Stress.
Plant Direct. 2025 May 19;9(5):e70059. doi: 10.1002/pld3.70059. eCollection 2025 May.
4
How sterols affect protoplasts plasma membrane water permeability and their volume under osmotic shock.
J Plant Res. 2025 Jan;138(1):161-172. doi: 10.1007/s10265-024-01599-0. Epub 2024 Nov 28.
5
Root osmotic sensing from local perception to systemic responses.
Stress Biol. 2022 Sep 5;2(1):36. doi: 10.1007/s44154-022-00054-1.
6
Analysis on the salt tolerance of Nitraria sibirica Pall. based on Pacbio full-length transcriptome sequencing.
Plant Cell Rep. 2023 Oct;42(10):1665-1686. doi: 10.1007/s00299-023-03052-3. Epub 2023 Jul 21.
7
Signals and Their Perception for Remodelling, Adjustment and Repair of the Plant Cell Wall.
Int J Mol Sci. 2023 Apr 18;24(8):7417. doi: 10.3390/ijms24087417.
8
Searching for Osmosensing Determinants in Poplar Histidine-Aspartate Kinases.
Int J Mol Sci. 2023 Mar 28;24(7):6318. doi: 10.3390/ijms24076318.
9
N6-methyladenosine RNA modification regulates cotton drought response in a Ca and ABA-dependent manner.
Plant Biotechnol J. 2023 Jun;21(6):1270-1285. doi: 10.1111/pbi.14036. Epub 2023 Mar 22.
10
Genome-wide identification and expression analysis of two-component system genes in sweet potato ( L.).
Front Plant Sci. 2023 Jan 12;13:1091620. doi: 10.3389/fpls.2022.1091620. eCollection 2022.

本文引用的文献

2
The combinatorial nature of osmosensing in fishes.
Physiology (Bethesda). 2012 Aug;27(4):259-75. doi: 10.1152/physiol.00014.2012.
3
Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs.
Plant Physiol. 2012 Sep;160(1):379-95. doi: 10.1104/pp.112.202408. Epub 2012 Jul 24.
4
Intron-mediated alternative splicing of Arabidopsis P5CS1 and its association with natural variation in proline and climate adaptation.
Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9197-202. doi: 10.1073/pnas.1203433109. Epub 2012 May 21.
6
Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density.
New Phytol. 2012 Jul;195(1):124-35. doi: 10.1111/j.1469-8137.2012.04136.x. Epub 2012 Apr 17.
7
A bZIP protein, VIP1, is a regulator of osmosensory signaling in Arabidopsis.
Plant Physiol. 2012 May;159(1):144-55. doi: 10.1104/pp.112.197020. Epub 2012 Mar 27.
8
Osmosensitive changes of carbohydrate metabolism in response to cellulose biosynthesis inhibition.
Plant Physiol. 2012 May;159(1):105-17. doi: 10.1104/pp.112.195198. Epub 2012 Mar 15.
9
Physiological genomics of response to soil drying in diverse Arabidopsis accessions.
Plant Cell. 2012 Mar;24(3):893-914. doi: 10.1105/tpc.112.096180. Epub 2012 Mar 9.
10
Mechanisms of stomatal development.
Annu Rev Plant Biol. 2012;63:591-614. doi: 10.1146/annurev-arplant-042811-105451. Epub 2012 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验