Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan.
Plant Physiol. 2013 Feb;161(2):942-53. doi: 10.1104/pp.112.209791. Epub 2012 Nov 26.
The molecular basis of plant osmosensing remains unknown. Arabidopsis (Arabidopsis thaliana) Histidine Kinase1 (AHK1) can complement the osmosensitivity of yeast (Saccharomyces cerevisiae) osmosensor mutants lacking Synthetic Lethal of N-end rule1 and SH3-containing Osmosensor and has been proposed to act as a plant osmosensor. We found that ahk1 mutants in either the Arabidopsis Nossen-0 or Columbia-0 background had increased stomatal density and stomatal index consistent with greater transpirational water loss. However, the growth of ahk1 mutants was not more sensitive to controlled moderate low water potential (ψ(w)) or to salt stress. Also, ahk1 mutants had increased, rather than reduced, solute accumulation across a range of low ψ(w) severities. ahk1 mutants had reduced low ψ(w) induction of Δ(1)-Pyrroline-5-Carboxylate Synthetase1 (P5CS1) and 9-cis-Epoxycarotenoid Dioxygenase3, which encode rate-limiting enzymes in proline and abscisic acid (ABA) synthesis, respectively. However, neither Pro nor ABA accumulation was reduced in ahk1 mutants at low ψ(w). P5CS1 protein level was not reduced in ahk1 mutants. This indicated that proline accumulation was regulated in part by posttranscriptional control of P5CS1 that was not affected by AHK1. Expression of AHK1 itself was reduced by low ψ(w), in contrast to previous reports. These results define a role of AHK1 in controlling stomatal density and the transcription of stress-responsive genes. These phenotypes may be mediated in part by reduced ABA sensitivity. More rapid transpiration and water depletion can also explain the previously reported sensitivity of ahk1 to uncontrolled soil drying. The unimpaired growth, ABA, proline, and solute accumulation of ahk1 mutants at low ψ(w) suggest that AHK1 may not be the main plant osmosensor required for low ψ(w) tolerance.
植物渗透压感应的分子基础尚不清楚。拟南芥(Arabidopsis thaliana)组氨酸激酶 1(AHK1)可以补充酵母(Saccharomyces cerevisiae)渗透压传感器突变体中缺乏合成致死的 N 端规则 1 和包含 SH3 的渗透压传感器的渗透压敏感性,并且已被提议作为植物渗透压传感器。我们发现,无论是在 Nossen-0 还是哥伦比亚-0 背景下的 ahk1 突变体,其气孔密度和气孔指数都增加了,这与蒸腾水损失增加一致。然而,ahk1 突变体的生长对受控的中度低水势(ψ(w))或盐胁迫并不更敏感。此外,ahk1 突变体在一系列低 ψ(w)严重程度下的溶质积累增加,而不是减少。ahk1 突变体在低 ψ(w)下诱导的Δ(1)-吡咯啉-5-羧酸合成酶 1(P5CS1)和 9-顺式-环氧类胡萝卜素双加氧酶 3 的表达减少,这两种酶分别编码脯氨酸和脱落酸(ABA)合成的限速酶。然而,在低 ψ(w)下,ahk1 突变体中的 Pro 或 ABA 积累并没有减少。ahk1 突变体中的 P5CS1 蛋白水平没有降低。这表明脯氨酸积累部分受到 P5CS1 的转录后控制,而不受 AHK1 的影响。与之前的报道相反,ahk1 的表达本身在低 ψ(w)下减少。这些结果定义了 AHK1 在控制气孔密度和应激响应基因转录中的作用。这些表型可能部分是通过降低 ABA 敏感性介导的。更快的蒸腾作用和水分耗竭也可以解释之前报道的 ahk1 对不受控制的土壤干燥的敏感性。ahk1 突变体在低 ψ(w)下不受损害的生长、ABA、脯氨酸和溶质积累表明,AHK1 可能不是低 ψ(w)耐受性所必需的主要植物渗透压传感器。