Suppr超能文献

随机最优控制方法在形态计算能力研究中的应用。

Stochastic optimal control methods for investigating the power of morphological computation.

机构信息

Graz University of Technology, Austria.

出版信息

Artif Life. 2013 Winter;19(1):115-31. doi: 10.1162/ARTL_a_00085. Epub 2012 Nov 27.

Abstract

One key idea behind morphological computation is that many difficulties of a control problem can be absorbed by the morphology of a robot. The performance of the controlled system naturally depends on the control architecture and on the morphology of the robot. Because of this strong coupling, most of the impressive applications in morphological computation typically apply minimalistic control architectures. Ideally, adapting the morphology of the plant and optimizing the control law interact so that finally, optimal physical properties of the system and optimal control laws emerge. As a first step toward this vision, we apply optimal control methods for investigating the power of morphological computation. We use a probabilistic optimal control method to acquire control laws, given the current morphology. We show that by changing the morphology of our robot, control problems can be simplified, resulting in optimal controllers with reduced complexity and higher performance. This concept is evaluated on a compliant four-link model of a humanoid robot, which has to keep balance in the presence of external pushes.

摘要

形态计算背后的一个关键思想是,控制问题的许多困难可以被机器人的形态所吸收。控制系统的性能自然取决于控制架构和机器人的形态。由于这种强耦合,形态计算中许多令人印象深刻的应用通常采用极简主义的控制架构。理想情况下,适应植物的形态并优化控制律相互作用,最终使系统的最佳物理特性和最佳控制律得以实现。作为实现这一愿景的第一步,我们应用最优控制方法来研究形态计算的能力。我们使用概率最优控制方法来获取给定当前形态的控制律。我们表明,通过改变机器人的形态,可以简化控制问题,从而得到具有更低复杂度和更高性能的最优控制器。这一概念在一个仿人机器人的四连杆柔顺模型上进行了评估,该机器人必须在外部推力的作用下保持平衡。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验