Department of Environmental Sciences, Faculty of Geosciences, Utrecht University, Heidelberglaan 2, PO box 80115, Utrecht 3508 TC, The Netherlands.
Nat Commun. 2012;3:1221. doi: 10.1038/ncomms2217.
The revolutionary rise of broad-leaved (flowering) angiosperm plant species during the Cretaceous initiated a global ecological transformation towards modern biodiversity. Still, the mechanisms involved in this angiosperm radiation remain enigmatic. Here we show that the period of rapid angiosperm evolution initiated after the leaf interior (post venous) transport path length for water was reduced beyond the leaf interior transport path length for CO2 at a critical leaf vein density of 2.5-5 mm mm(-2). Data and our modelling approaches indicate that surpassing this critical vein density was a pivotal moment in leaf evolution that enabled evolving angiosperms to profit from developing leaves with more and smaller stomata in terms of higher carbon returns from equal water loss. Surpassing the critical vein density may therefore have facilitated evolving angiosperms to develop leaves with higher gas exchange capacities required to adapt to the Cretaceous CO2 decline and outcompete previously dominant coniferous species in the upper canopy.
宽叶(开花)被子植物物种在白垩纪的革命性崛起引发了全球生态向现代生物多样性的转变。然而,这种被子植物辐射的机制仍然是个谜。在这里,我们表明,在叶片内部(静脉后)的水分运输路径长度超过叶片内部 CO2 运输路径长度时,快速的被子植物进化时期在临界叶片脉密度为 2.5-5 毫米毫米(-2)时开始。数据和我们的建模方法表明,超过这个临界叶脉密度是叶片进化的一个关键时刻,使进化中的被子植物能够从更多和更小的气孔中获益,因为从等量的水分损失中获得更高的碳回报。因此,超过临界叶脉密度可能有助于进化中的被子植物发展具有更高气体交换能力的叶片,以适应白垩纪 CO2 的下降,并在树冠上层与以前占主导地位的针叶树物种竞争。