Suppr超能文献

Respiratory impedance to ambient pressure changes at low frequencies.

作者信息

Peslin R, Duvivier C, Suki B, Farre R, Oostveen E, Gallina C

机构信息

Unité 14 Institut National de la Santé et de la Recherche Médicale, Physiopathologie Respiratoire, Vandoeuvre-les-Nancy, France.

出版信息

J Appl Physiol (1985). 1990 Feb;68(2):665-71. doi: 10.1152/jappl.1990.68.2.665.

Abstract

Respiratory impedance may be studied by measuring airway flow (Vaw) when pressure is varied at the mouth (input impedance) or around the chest (transfer impedance). A third possibility, which had not been investigated so far, is to apply pressure variations simultaneously at the two places, that is to vary ambient pressure (Pam). This provides respiratory impedance to ambient pressure changes (Zapc = Vaw/Pam). In that situation airway impedance (Zaw) and tissue impedance (Zt) are mechanically in parallel, and both are in series with alveolar gas impedance (Zg): Zapc = Zaw + Zg + Zaw.Zg/Zt. We assessed the frequency dependence of Zapc from 0.05 to 2 Hz in nine normal subjects submitted to sinusoidal Pam changes of 2-4 kPa peak to peak. The real part of Zapc (Rapc) was of 6.2 kPa.1(-1).s at 0.05 Hz and decreased to 1.9 kPa.1(-1).s at 2 Hz. Similarly the effective compliance (Capc), computed from the imaginary part of Zapc, decreased from 0.045 1.kPa-1 at 0.05 Hz to 0.027 1.kPa-1 at 2 Hz. Breathing against an added resistance of 0.46 kPa.1(-1).s exaggerated the negative frequency dependence of both Rapc and Capc. When values of airway resistance and inertance derived from transfer impedance data were introduced, Zapc was used to compute effective tissue resistance (Rt) and compliance (Ct). Rt was found to decrease from 0.32 to 0.15 kPa.1(-1).s and Ct from 1.11 to 0.64 1.kPa-1 between 0.25 and 2 Hz. Ct was slightly lower with the added resistance. These results are in good agreement with the data obtained by other approaches.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验