Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
PLoS One. 2012;7(11):e49601. doi: 10.1371/journal.pone.0049601. Epub 2012 Nov 26.
The BCL-2 family protein BAK is a key regulator of mitochondrial apoptosis. BAK activation first involves N-terminal conformational changes that lead to the transient exposure of the BAK BH3 domain that then inserts into a hydrophobic groove on another BAK molecule to form symmetric dimers. We showed recently that post-translational modifications are important in the regulation of BAK conformational change and multimerization, with dephosphorylation at tyrosine 108 constituting an initial step in the BAK activation process. We now show that dephosphorylation of serine 117 (S117), located in the BAK hydrophobic groove, is also critical for BAK activation to proceed to completion. Phosphorylation of BAK at S117 has two important regulatory functions: first, it occludes the binding of BH3-containing peptides that bind to BAK causing activation and cytochrome c release from mitochondria; second, it prevents BAK-BH3:BAK-Groove interactions that nucleate dimer formation for subsequent multimerization. Hence, BH3-mediated BAK conformational change and subsequent BAK multimerization for cytochrome c release and cell death is intimately linked to, and dependent on, dephosphorylation at S117. Our study reveals important novel mechanistic and structural insights into the temporal sequence of events governing the process of BAK activation in commitment to cell death and how they are regulated.
BCL-2 家族蛋白 BAK 是线粒体凋亡的关键调节蛋白。BAK 的激活首先涉及 N 端构象变化,导致 BAK BH3 结构域的瞬时暴露,然后插入另一个 BAK 分子上的疏水槽中,形成对称二聚体。我们最近表明,翻译后修饰在 BAK 构象变化和多聚化的调节中很重要,其中酪氨酸 108 的去磷酸化是 BAK 激活过程的初始步骤。我们现在表明,位于 BAK 疏水槽中的丝氨酸 117(S117)的去磷酸化对于 BAK 激活的完成也是至关重要的。BAK 在 S117 上的磷酸化具有两个重要的调节功能:首先,它阻止了与 BAK 结合导致线粒体细胞色素 c 释放的含有 BH3 的肽结合;其次,它阻止了 BAK-BH3:BAK-沟相互作用,从而引发二聚体的形成,进而引发多聚体的形成。因此,BH3 介导的 BAK 构象变化和随后的 BAK 多聚化导致细胞色素 c 释放和细胞死亡与 S117 的去磷酸化密切相关,并依赖于 S117 的去磷酸化。我们的研究揭示了 BAK 激活过程中决定细胞死亡的事件的时间顺序的重要新的机制和结构见解,以及它们是如何被调节的。