Suppr超能文献

高效改进 BDND 滤波算法以去除高密度脉冲噪声。

Efficient improvements on the BDND filtering algorithm for the removal of high-density impulse noise.

机构信息

Computer Engineering Department, University of Jordan, Amman 1192, Jordan.

出版信息

IEEE Trans Image Process. 2013 Mar;22(3):1223-32. doi: 10.1109/TIP.2012.2228496. Epub 2012 Nov 20.

Abstract

Switching median filters are known to outperform standard median filters in the removal of impulse noise due to their capability of filtering candidate noisy pixels and leaving other pixels intact. The boundary discriminative noise detection (BDND) is one powerful example in this class of filters. However, there are some issues related to the filtering step in the BDND algorithm that may degrade its performance. In this paper, we propose two modifications to the filtering step of the BDND algorithm to address these issues. Experimental evaluation shows the effectiveness of the proposed modifications in producing sharper images than the BDND algorithm.

摘要

切换中值滤波器由于能够滤除候选噪声像素而保留其他像素不变,因此在去除脉冲噪声方面优于标准中值滤波器。边界判别噪声检测(BDND)是这类滤波器中的一个强大示例。但是,BDND 算法中的滤波步骤存在一些问题,可能会降低其性能。在本文中,我们针对 BDND 算法的滤波步骤提出了两种改进方法。实验评估表明,所提出的改进方法在生成更清晰的图像方面比 BDND 算法更有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验