Suppr超能文献

通过改进的全变差图像去噪方法在压缩感知磁共振成像重建中去除高密度高斯噪声

Removal of high density Gaussian noise in compressed sensing MRI reconstruction through modified total variation image denoising method.

作者信息

Zhu Yonggui, Shen Weiheng, Cheng Fanqiang, Jin Cong, Cao Gang

机构信息

School of Data Science and Media Intelligence, Communication University of China, Beijing, 100024, China.

School of Information and Communication Engineering, Communication University of China, Beijing, 100024, China.

出版信息

Heliyon. 2020 Mar 30;6(3):e03680. doi: 10.1016/j.heliyon.2020.e03680. eCollection 2020 Mar.

Abstract

A modified total variation MRI image denoising method is proposed in this paper. First, the proposed method removes the noise in -space in compressed sensing MRI reconstruction. Then, the removed -space data is used as a partial frequency observation in compressed sensing MRI model. The proposed method shows better results than RecPF method, LDP method, TVCMRI method, and FCSA method in sparse MRI reconstruction. The proposed method is tested against Shepp-Logan phantom and real MR images corrupted by noise of different intensity level, and it gives better Signal-to-Noise Ratio (SNR), the relative error (ReErr), and the structural similarity (SSIM) than RecPF, LDP, TVCMRI, and FCSA.

摘要

本文提出了一种改进的全变差MRI图像去噪方法。首先,该方法在压缩感知MRI重建中去除空间噪声。然后,将去除的空间数据用作压缩感知MRI模型中的部分频率观测值。在稀疏MRI重建中,该方法比RecPF方法、LDP方法、TVCMRI方法和FCSA方法显示出更好的结果。该方法针对Shepp-Logan体模和受不同强度噪声干扰的真实MR图像进行了测试,并且在信噪比(SNR)、相对误差(ReErr)和结构相似性(SSIM)方面比RecPF、LDP、TVCMRI和FCSA表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abdb/7113634/4f9ab7a3a0de/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验