Suppr超能文献

一种变构机制,用于药物阻断人类心脏钾通道 KCNQ1。

An allosteric mechanism for drug block of the human cardiac potassium channel KCNQ1.

机构信息

John Oates Institute for Experimental Therapeutics, Departments of Medicine, Pharmacology and Center for Structural Biology, Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.

出版信息

Mol Pharmacol. 2013 Feb;83(2):481-9. doi: 10.1124/mol.112.081513. Epub 2012 Nov 28.

Abstract

The intracellular aspect of the sixth transmembrane segment within the ion-permeating pore is a common binding site for many voltage-gated ion channel blockers. However, the exact site(s) at which drugs bind remain controversial. We used extensive site-directed mutagenesis coupled with molecular modeling to examine mechanisms in drug block of the human cardiac potassium channel KCNQ1. A total of 48 amino acid residues in the S6 segment, S4-S5 linker, and the proximal C-terminus of the KCNQ1 channel were mutated individually to alanine; alanines were mutated to cysteines. Residues modulating drug block were identified when mutant channels displayed <50% block on exposure to drug concentrations that inhibited wild-type current by ≥90%. Homology modeling of the KCNQ1 channel based on the Kv1.2 structure unexpectedly predicted that the key residue modulating drug block (F351) faces away from the permeating pore. In the open-state channel model, F351 lines a pocket that also includes residues L251 and V254 in S4-S5 linker. Docking calculations indicated that this pocket is large enough to accommodate quinidine. To test this hypothesis, L251A and V254A mutants were generated that display a reduced sensitivity to blockage with quinidine. Thus, our data support a model in which open state block of this channel occurs not via binding to a site directly in the pore but rather by a novel allosteric mechanism: drug access to a side pocket generated in the open-state channel configuration and lined by S6 and S4-S5 residues.

摘要

第六跨膜段的细胞内部分是许多电压门控离子通道阻滞剂的共同结合位点。然而,药物结合的确切部位仍存在争议。我们使用广泛的定点突变结合分子建模来研究人心脏钾通道 KCNQ1 的药物阻断机制。S6 片段、S4-S5 接头和 KCNQ1 通道近端 C 末端的 48 个氨基酸残基分别突变为丙氨酸;将丙氨酸突变为半胱氨酸。当突变通道在暴露于药物浓度下显示出 <50%的阻断作用时,确定了调节药物阻断的残基,该药物浓度抑制野生型电流≥90%。基于 Kv1.2 结构的 KCNQ1 通道的同源建模出人意料地预测,调节药物阻断的关键残基(F351)朝向远离渗透孔。在开放状态通道模型中,F351 排列在一个口袋中,该口袋还包括 S4-S5 接头中的残基 L251 和 V254。对接计算表明,这个口袋足够大,可以容纳奎尼丁。为了验证这一假设,生成了 L251A 和 V254A 突变体,它们对奎尼丁的阻断敏感性降低。因此,我们的数据支持这样一种模型,即该通道的开放状态阻断不是通过与孔内的直接结合位点结合发生,而是通过一种新的变构机制发生:药物进入开放状态通道构象中生成的侧袋,由 S6 和 S4-S5 残基排列。

相似文献

1
An allosteric mechanism for drug block of the human cardiac potassium channel KCNQ1.
Mol Pharmacol. 2013 Feb;83(2):481-9. doi: 10.1124/mol.112.081513. Epub 2012 Nov 28.
2
KCNQ1 channels voltage dependence through a voltage-dependent binding of the S4-S5 linker to the pore domain.
J Biol Chem. 2011 Jan 7;286(1):707-16. doi: 10.1074/jbc.M110.146324. Epub 2010 Oct 12.
3
The S4-S5 linker of KCNQ1 channels forms a structural scaffold with the S6 segment controlling gate closure.
J Biol Chem. 2011 Jan 7;286(1):717-25. doi: 10.1074/jbc.M110.146977. Epub 2010 Nov 8.
4
Probing the mechanisms underlying modulation of quinidine sensitivity to cardiac I(Ks) block by protein kinase A-mediated I(Ks) phosphorylation.
Br J Pharmacol. 2009 Jul;157(6):952-61. doi: 10.1111/j.1476-5381.2009.00293.x. Epub 2009 Jun 12.
5
Identification of a protein-protein interaction between KCNE1 and the activation gate machinery of KCNQ1.
J Gen Physiol. 2010 Jun;135(6):607-18. doi: 10.1085/jgp.200910386. Epub 2010 May 17.
6
The residue I257 at S4-S5 linker in KCNQ1 determines KCNQ1/KCNE1 channel sensitivity to 1-alkanols.
Acta Pharmacol Sin. 2016 Jan;37(1):124-33. doi: 10.1038/aps.2015.133.
7
Allosteric features of KCNQ1 gating revealed by alanine scanning mutagenesis.
Biophys J. 2011 Feb 16;100(4):885-94. doi: 10.1016/j.bpj.2010.12.3726.
8
Structural basis of slow activation gating in the cardiac I Ks channel complex.
Cell Physiol Biochem. 2011;27(5):443-52. doi: 10.1159/000329965. Epub 2011 Jun 15.
10
Role of the S6 C-terminus in KCNQ1 channel gating.
J Physiol. 2007 Dec 1;585(Pt 2):325-37. doi: 10.1113/jphysiol.2007.145813. Epub 2007 Oct 11.

引用本文的文献

1
Toward high-resolution modeling of small molecule-ion channel interactions.
Front Pharmacol. 2024 Jun 11;15:1411428. doi: 10.3389/fphar.2024.1411428. eCollection 2024.
2
Anti-malarial drugs: Mechanisms underlying their proarrhythmic effects.
Br J Pharmacol. 2022 Dec;179(24):5237-5258. doi: 10.1111/bph.15959. Epub 2022 Oct 20.
3
Structures Illuminate Cardiac Ion Channel Functions in Health and in Long QT Syndrome.
Front Pharmacol. 2020 May 4;11:550. doi: 10.3389/fphar.2020.00550. eCollection 2020.
4
Upgraded molecular models of the human KCNQ1 potassium channel.
PLoS One. 2019 Sep 13;14(9):e0220415. doi: 10.1371/journal.pone.0220415. eCollection 2019.
5
Quantitative analysis of the Ca -dependent regulation of delayed rectifier K current I in rabbit ventricular myocytes.
J Physiol. 2017 Apr 1;595(7):2253-2268. doi: 10.1113/JP273676. Epub 2017 Mar 28.

本文引用的文献

1
Allosteric features of KCNQ1 gating revealed by alanine scanning mutagenesis.
Biophys J. 2011 Feb 16;100(4):885-94. doi: 10.1016/j.bpj.2010.12.3726.
2
The S4-S5 linker of KCNQ1 channels forms a structural scaffold with the S6 segment controlling gate closure.
J Biol Chem. 2011 Jan 7;286(1):717-25. doi: 10.1074/jbc.M110.146977. Epub 2010 Nov 8.
3
KCNQ1 channels voltage dependence through a voltage-dependent binding of the S4-S5 linker to the pore domain.
J Biol Chem. 2011 Jan 7;286(1):707-16. doi: 10.1074/jbc.M110.146324. Epub 2010 Oct 12.
4
PD-118057 contacts the pore helix of hERG1 channels to attenuate inactivation and enhance K+ conductance.
Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20075-80. doi: 10.1073/pnas.0906597106. Epub 2009 Nov 5.
5
Genetic testing for long-QT syndrome: distinguishing pathogenic mutations from benign variants.
Circulation. 2009 Nov 3;120(18):1752-60. doi: 10.1161/CIRCULATIONAHA.109.863076. Epub 2009 Oct 19.
6
Biophysical properties of 9 KCNQ1 mutations associated with long-QT syndrome.
Circ Arrhythm Electrophysiol. 2009 Aug;2(4):417-26. doi: 10.1161/CIRCEP.109.850149. Epub 2009 May 22.
7
Augmented potassium current is a shared phenotype for two genetic defects associated with familial atrial fibrillation.
J Mol Cell Cardiol. 2010 Jan;48(1):181-90. doi: 10.1016/j.yjmcc.2009.07.020. Epub 2009 Jul 30.
9
Structural models for the KCNQ1 voltage-gated potassium channel.
Biochemistry. 2007 Dec 11;46(49):14141-52. doi: 10.1021/bi701597s. Epub 2007 Nov 14.
10
Role of the S6 C-terminus in KCNQ1 channel gating.
J Physiol. 2007 Dec 1;585(Pt 2):325-37. doi: 10.1113/jphysiol.2007.145813. Epub 2007 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验