Suppr超能文献

在年轻至中年肥胖至重度肥胖受试者中对Actigraph GT1M进行跑步机校准

Treadmill Calibration of the Actigraph GT1M in Young-to-Middle-Aged Obese-to-Severely Obese Subjects.

作者信息

Aadland Eivind, Anderssen Sigmund Alfred

机构信息

Faculty of Health Studies, Sogn og Fjordane University College, P.O. Box 523, 6803 Førde, Norway.

出版信息

J Obes. 2012;2012:318176. doi: 10.1155/2012/318176. Epub 2012 Nov 1.

Abstract

To understand the impact of physical activity (PA) on health, valid accelerometer count cut points must be applied to measure PA. Because cut points may be population specific, we aimed to establish accelerometer cut points for moderate PA (MPA) and vigorous PA (VPA) (defined as ≥3 and ≥6 metabolic equivalents, resp.) in young-to-middle-aged obese-to-severely obese subjects. Data from 42 subjects (11 men; body mass index 39.8 ± 5.7; age 43.2 ± 9.2 years) who performed a treadmill calibration using the Actigraph GT1M, were analyzed using ordinary linear regression (OLR), linear mixed model regression (MIX), and receiver operating characteristics curves (ROC 1; ROC 2). Cut points obtained from the models were quite different (612 to 1646 counts/min for MPA; 3061 to 7220 counts/min for VPA). We argue that the MIX approach, which resulted in cut points of 612 and 4980 counts/min for MPA and VPA, respectively, is the most appropriate method to establish accelerometer cut points in this setting. We conclude that accelerometer cut points are lower in young-to-middle-aged obese-to-severely obese subjects compared to young normal-weight subjects and that care should be taken when analyzing PA level in groups that vary in age and degree of obesity.

摘要

为了解身体活动(PA)对健康的影响,必须应用有效的加速度计计数切点来测量PA。由于切点可能因人群而异,我们旨在为年轻至中年肥胖至重度肥胖受试者建立中度PA(MPA)和剧烈PA(VPA)(分别定义为≥3和≥6代谢当量)的加速度计切点。对42名使用Actigraph GT1M进行跑步机校准的受试者(11名男性;体重指数39.8±5.7;年龄43.2±9.2岁)的数据,使用普通线性回归(OLR)、线性混合模型回归(MIX)和受试者工作特征曲线(ROC 1;ROC 2)进行分析。从模型中获得的切点差异很大(MPA为612至1646次/分钟;VPA为3061至7220次/分钟)。我们认为,MIX方法分别得出MPA和VPA的切点为612和4980次/分钟,是在此环境中建立加速度计切点的最合适方法。我们得出结论,与年轻正常体重受试者相比,年轻至中年肥胖至重度肥胖受试者的加速度计切点更低,并且在分析年龄和肥胖程度不同的组的PA水平时应谨慎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f95/3502012/fb294511e266/JOBES2012-318176.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验