Suppr超能文献

评估自由活动身体活动的 ActiGraph 2-回归模型、马修斯切点和 NHANES 切点的有效性。

Validity of ActiGraph 2-regression model, Matthews cut-points, and NHANES cut-points for assessing free-living physical activity.

机构信息

Dept of Exercise and Health Sciences, University of Massachusetts, Boston, USA.

出版信息

J Phys Act Health. 2013 May;10(4):504-14. doi: 10.1123/jpah.10.4.504. Epub 2012 Sep 11.

Abstract

BACKGROUND

The purpose of this study was to compare the 2006 and 2010 Crouter algorithms for the ActiGraph accelerometer and the NHANES and Matthews cut-points, to indirect calorimetry during a 6-hr free-living measurement period.

METHODS

Twenty-nine participants (mean ± SD; age, 38 ± 11.7 yrs; BMI, 25.0 ± 4.6 kg·m-2) were monitored for 6 hours while at work or during their leisure time. Physical activity (PA) data were collected using an ActiGraph GT1M and energy expenditure (METs) was measured using a Cosmed K4b2. ActiGraph prediction equations were compared with the Cosmed for METs and time spent in sedentary behaviors, light PA (LPA), moderate PA (MPA), and vigorous PA (VPA).

RESULTS

The 2010 Crouter algorithm overestimated time spent in LPA, MPA, and VPA by 9.0%-44.5% and underestimated sedentary time by 20.8%. The NHANES cut-points overestimated sedentary time and LPA by 8.3%-9.9% and underestimated MPA and VPA by 50.4%-56.7%. The Matthews cut-points overestimated sedentary time (9.9%) and MPA (33.4%) and underestimated LPA (25.7%) and VPA (50.1%). The 2006 Crouter algorithm was within 1.8% of measured sedentary time; however, mean errors ranged from 34.4%-163.1% for LPA, MPA, and VPA.

CONCLUSION

Of the ActiGraph prediction methods examined, none of them was clearly superior for estimating free-living PA compared with indirect calorimetry.

摘要

背景

本研究旨在比较 2006 年和 2010 年 Crouter 算法与 NHANES 和 Matthews 切点,用于间接测热法在 6 小时自由生活测量期间。

方法

29 名参与者(平均±SD;年龄,38±11.7 岁;BMI,25.0±4.6kg·m-2)在工作或闲暇时间监测 6 小时。使用 ActiGraph GT1M 收集身体活动(PA)数据,使用 Cosmed K4b2 测量能量消耗(METs)。比较 ActiGraph 预测方程与 Cosmed 方程,用于测量 METs 和久坐行为、轻度 PA(LPA)、中度 PA(MPA)和剧烈 PA(VPA)的时间。

结果

2010 年 Crouter 算法高估了 LPA、MPA 和 VPA 的时间,高估了 9.0%-44.5%,低估了久坐时间 20.8%。NHANES 切点高估了久坐时间和 LPA,高估了 8.3%-9.9%,低估了 MPA 和 VPA,低估了 50.4%-56.7%。Matthews 切点高估了久坐时间(9.9%)和 MPA(33.4%),低估了 LPA(25.7%)和 VPA(50.1%)。2006 年 Crouter 算法与测量的久坐时间相差 1.8%;然而,LPA、MPA 和 VPA 的平均误差范围为 34.4%-163.1%。

结论

在所检查的 ActiGraph 预测方法中,没有一种方法明显优于间接测热法,用于估计自由生活中的 PA。

相似文献

1
Validity of ActiGraph 2-regression model, Matthews cut-points, and NHANES cut-points for assessing free-living physical activity.
J Phys Act Health. 2013 May;10(4):504-14. doi: 10.1123/jpah.10.4.504. Epub 2012 Sep 11.
2
Validity of ActiGraph child-specific equations during various physical activities.
Med Sci Sports Exerc. 2013 Jul;45(7):1403-9. doi: 10.1249/MSS.0b013e318285f03b.
3
Estimating physical activity in youth using a wrist accelerometer.
Med Sci Sports Exerc. 2015 May;47(5):944-51. doi: 10.1249/MSS.0000000000000502.
4
Validity of the Actical for estimating free-living physical activity.
Eur J Appl Physiol. 2011 Jul;111(7):1381-9. doi: 10.1007/s00421-010-1758-2. Epub 2010 Dec 12.
5
Prediction of energy expenditure and physical activity in preschoolers.
Med Sci Sports Exerc. 2014 Jun;46(6):1216-26. doi: 10.1249/MSS.0000000000000209.
7
Calibration of wrist-worn ActiWatch 2 and ActiGraph wGT3X for assessment of physical activity in young adults.
Gait Posture. 2019 Feb;68:141-149. doi: 10.1016/j.gaitpost.2018.11.023. Epub 2018 Nov 19.
8
Comparing ActiGraph equations for estimating energy expenditure in older adults.
J Sports Sci. 2019 Jan;37(2):188-195. doi: 10.1080/02640414.2018.1488437. Epub 2018 Jun 18.
10
Feasibility and validity of accelerometer measurements to assess physical activity in toddlers.
Int J Behav Nutr Phys Act. 2011 Jun 26;8:67. doi: 10.1186/1479-5868-8-67.

引用本文的文献

1
Developing and comparing a new BMI inclusive energy expenditure algorithm on wrist-worn wearables.
Sci Rep. 2025 Jun 19;15(1):20060. doi: 10.1038/s41598-025-99963-0.
3
Validity of the Actigraph-GT9X accelerometer for measuring steps and energy expenditures in heart failure patients.
PLoS One. 2024 Dec 30;19(12):e0315575. doi: 10.1371/journal.pone.0315575. eCollection 2024.
4
Pain Self-efficacy Is Associated With Patient-Reported Function in Individuals With Chronic Hip Pain.
JOSPT Open. 2024 Jul;2(3):264-271. doi: 10.2519/josptopen.2024.1021. Epub 2024 Jun 6.
5
Raw Photoplethysmography as an Enhancement for Research-Grade Wearable Activity Monitors.
JMIR Mhealth Uhealth. 2024 Sep 27;12:e57158. doi: 10.2196/57158.
6
Association of Bone Mineral Density with Lean Mass, Fat Mass, and Physical Activity in Young Overweight and Obese Women.
Int J Exerc Sci. 2022 Apr 1;15(7):585-598. doi: 10.70252/POYU6849. eCollection 2022.
7
The association of moderate-to-vigorous and light-intensity physical activity on static balance in middle-aged and older-aged adults.
Aging Clin Exp Res. 2023 Mar;35(3):541-550. doi: 10.1007/s40520-023-02344-8. Epub 2023 Jan 25.
9
Validity of Domain-Specific Sedentary Time Using Accelerometer and Questionnaire with activPAL Criterion.
Int J Environ Res Public Health. 2021 Dec 3;18(23):12774. doi: 10.3390/ijerph182312774.
10
Examining 24-Hour Activity and Sleep Behaviors and Related Determinants in Latino Adolescents and Young Adults With Obesity.
Health Educ Behav. 2022 Apr;49(2):291-303. doi: 10.1177/10901981211054789. Epub 2021 Nov 18.

本文引用的文献

1
Use of a two-regression model for estimating energy expenditure in children.
Med Sci Sports Exerc. 2012 Jun;44(6):1177-85. doi: 10.1249/MSS.0b013e3182447825.
2
Validation of wearable monitors for assessing sedentary behavior.
Med Sci Sports Exerc. 2011 Aug;43(8):1561-7. doi: 10.1249/MSS.0b013e31820ce174.
3
Self-reported and objectively measured activity related to biomarkers using NHANES.
Med Sci Sports Exerc. 2011 May;43(5):815-21. doi: 10.1249/MSS.0b013e3181fdfc32.
5
Levels and patterns of objectively assessed physical activity--a comparison between Sweden and the United States.
Am J Epidemiol. 2010 May 15;171(10):1055-64. doi: 10.1093/aje/kwq069. Epub 2010 Apr 20.
6
Refined two-regression model for the ActiGraph accelerometer.
Med Sci Sports Exerc. 2010 May;42(5):1029-37. doi: 10.1249/MSS.0b013e3181c37458.
7
Validation of the ActiGraph two-regression model for predicting energy expenditure.
Med Sci Sports Exerc. 2010 Sep;42(9):1785-92. doi: 10.1249/MSS.0b013e3181d5a984.
9
Comparison of four ActiGraph accelerometers during walking and running.
Med Sci Sports Exerc. 2010 Feb;42(2):368-74. doi: 10.1249/MSS.0b013e3181b3af49.
10
Validation of reported physical activity for cholesterol control using two different physical activity instruments.
Vasc Health Risk Manag. 2009;5:649-61. doi: 10.2147/vhrm.s6164. Epub 2009 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验