Institute for Plant Physiology and Experimental Gardens «Augarten» University of Vienna, Biologiezentrum, Althanstraße 14, A-1090 Wien, Austria.
J Plant Physiol. 1984 Aug;115(5):361-70. doi: 10.1016/S0176-1617(84)80035-8. Epub 2012 Feb 20.
Seedling length, CO(2) output, dry weight and energy content of the seeds and seedling organs of Triticum, Zea, Helianthus and Phaseolus were determined in order to study the efficiency of storage substance utilization and energy turnover during seedling development up to 108 h. The respiration rate is lower in the large seeds of Zea and Phaseolus (2.2 and 2.0 mgCO(2)·gDW(-1)·h(-1)) than in the small seeds of Triticum and Helianthus (3.1 and 4.2 mgCO(2)·gDW(-1)·h(-1)). CO(2) output during the synthesis of seedling organs reaches a maximum value in Triticum, Zea and Helianthus after 36 h (1.0, 1.7 and 1.3 gCO(2)·gDW(n)(-1), resp.) and in Phaseolus after 60 h (3.0 gCO(2)·gDW(n)(-1)). This high CO(2) evolution is caused by the lag phase of growth at the beginning of germination, as indicated in the RGR course. The loss of mobilized storage substances caused by CO(2) evolution amounts to 46% in Phaseolus and is less (av. 30%) in the other seeds. The energy loss in relation to the energy of the ungerminated seed is relatively high in the small and energy-rich seeds of Triticum (19%) and Helianthus (21 %) compared with the large seeds of Zea (8 %) and Phaseolus (13 %). The efficiency of energy utilization corresponding to the energy stored in the newly formed seedling organs is low in Helianthus (40%) and Phaseolus (43%) and relatively high in Triticum (55%) and Zea (6 %). The calorific equivalent of the CO(2) amount evolved differs widely (11 to 24 kJ·gCO(2)(-1)). With the exception of Zea these values are much higher than the calorific equivalent of the dry weight loss. The latter may be explained by energy losses without CO(2) evolution, as well as by CO(2) refixation by PEPC and by energy dissipation in the maintenance metabolism.
为了研究种子贮藏物质利用效率和能量转化,测定了小麦、玉米、向日葵和菜豆种子和幼苗器官的幼苗长度、CO2 释放量、干重和能量含量,直到 108 小时。玉米和菜豆的大种子(2.2 和 2.0 mgCO2·gDW(-1)·h(-1))的呼吸速率低于小麦和向日葵的小种子(3.1 和 4.2 mgCO2·gDW(-1)·h(-1))。在 Triticum、Zea 和 Helianthus 中,幼苗器官合成过程中的 CO2 释放量在 36 小时后达到最大值(分别为 1.0、1.7 和 1.3 gCO2·gDW(n)(-1)),在 Phaseolus 中在 60 小时后达到最大值(3.0 gCO2·gDW(n)(-1))。这一高 CO2 释放是由发芽初期生长的滞后阶段引起的,正如 RGR 过程所表明的那样。由于 CO2 释放,动员的贮藏物质损失在 Phaseolus 中达到 46%,在其他种子中损失较少(平均为 30%)。与未发芽种子的能量相比,在小麦和向日葵的小而富含能量的种子(19%和 21%)中,能量损失相对较高,而在 Zea 和 Phaseolus 的大种子(8%和 13%)中,能量损失相对较低。与新形成的幼苗器官中储存的能量相对应的能量利用效率在向日葵(40%)和菜豆(43%)中较低,在小麦(55%)和玉米(6%)中较高。CO2 释放量的热值当量差异很大(11 至 24 kJ·gCO2(-1))。除了 Zea 之外,这些值都远高于干重损失的热值当量。后者可以通过没有 CO2 释放的能量损失来解释,也可以通过 PEPC 固定 CO2 和维持代谢中的能量耗散来解释。