Suppr超能文献

建立基于基因型的华法林稳定剂量给药算法。

Creating a genotype-based dosing algorithm for acenocoumarol steady dose.

机构信息

Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Avda. De los Vélez s/n, 30008 Murcia, Spain.

出版信息

Thromb Haemost. 2013 Jan;109(1):146-53. doi: 10.1160/TH12-08-0631. Epub 2012 Nov 29.

Abstract

Acenocoumarol is a commonly prescribed anticoagulant drug for the prophylaxis and treatment of venous and arterial thromboembolic disorders in several countries. In counterpart of warfarin, there is scarce information about pharmacogenetic algorithms for steady acenocoumarol dose estimation. The aim of this study was to develop an algorithm of prediction for acenocoumarol.The algorithm was created using the data from 973 retrospectively selected anticoagulated patients and was validated in a second independent cohort adding up to 2,683 patients. The best regression model to predict stable dosage in the Primary Cohort included clinical factors (age and body mass index, BSA) and genetic variants (VKORC1, CYP2C9* and CYP4F2 polymorphisms) and explained up to 50% of stable dose. In the validation study the clinical algorithm yielded an adjusted R²=0.15 (estimation´s standard error=4.5) and the genetic approach improved the dose forecast up to 30% (estimation´s standard error=4.6). Again, the best model combined clinical and genetic factors (R² = 0.48; estimation´s standard error=4) which provided the best results of doses estimates within 20% of the real dose in patients taking lower (≤ 7 mg/week) or higher (≥ 25 mg/week) acenocoumarol doses. In conclusion, we developed a prediction algorithm using clinical data and three polymorphisms in VKORC1, CYP2C9* and CYP4F2 genes that provided a steady acenocoumarol dose for about 50% of patients in the Validation Cohort. Such algorithm was especially useful to patients who need higher or lower acenocoumarol doses, those patients with higher time required until their stabilisation and are more prone to suffer a treatment derived complication.

摘要

醋硝香豆素是一种常用于预防和治疗静脉和动脉血栓栓塞性疾病的抗凝药物,在多个国家都有处方。与华法林相比,关于稳定醋硝香豆素剂量估算的遗传药理学算法的信息却很少。本研究旨在开发醋硝香豆素的预测算法。该算法是使用 973 例回顾性选择的抗凝患者的数据创建的,并在第二个独立队列中进行了验证,该队列增加了 2683 例患者。在主要队列中,预测稳定剂量的最佳回归模型包括临床因素(年龄和体重指数、BSA)和遗传变异(VKORC1、CYP2C9和 CYP4F2 多态性),可以解释高达 50%的稳定剂量。在验证研究中,临床算法的调整 R²为 0.15(估计的标准误差=4.5),遗传方法将剂量预测提高了 30%(估计的标准误差=4.6)。同样,最佳模型结合了临床和遗传因素(R²=0.48;估计的标准误差=4),可以为接受较低(≤7mg/周)或较高(≥25mg/周)剂量醋硝香豆素的患者提供 20%以内的最佳剂量估计结果。总之,我们使用临床数据和 VKORC1、CYP2C9和 CYP4F2 基因中的三个多态性开发了一种预测算法,该算法为验证队列中约 50%的患者提供了稳定的醋硝香豆素剂量。该算法特别适用于需要较高或较低醋硝香豆素剂量的患者,这些患者需要更长的时间才能稳定下来,并且更容易发生治疗相关的并发症。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验