Suppr超能文献

更大的数据、协作工具与预测性药物发现的未来。

Bigger data, collaborative tools and the future of predictive drug discovery.

作者信息

Ekins Sean, Clark Alex M, Swamidass S Joshua, Litterman Nadia, Williams Antony J

机构信息

Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, NC, 27526, USA,

出版信息

J Comput Aided Mol Des. 2014 Oct;28(10):997-1008. doi: 10.1007/s10822-014-9762-y. Epub 2014 Jun 19.

Abstract

Over the past decade we have seen a growth in the provision of chemistry data and cheminformatics tools as either free websites or software as a service commercial offerings. These have transformed how we find molecule-related data and use such tools in our research. There have also been efforts to improve collaboration between researchers either openly or through secure transactions using commercial tools. A major challenge in the future will be how such databases and software approaches handle larger amounts of data as it accumulates from high throughput screening and enables the user to draw insights, enable predictions and move projects forward. We now discuss how information from some drug discovery datasets can be made more accessible and how privacy of data should not overwhelm the desire to share it at an appropriate time with collaborators. We also discuss additional software tools that could be made available and provide our thoughts on the future of predictive drug discovery in this age of big data. We use some examples from our own research on neglected diseases, collaborations, mobile apps and algorithm development to illustrate these ideas.

摘要

在过去十年中,我们看到化学数据和化学信息学工具的提供有所增长,它们以免费网站或软件即服务的商业产品形式存在。这些改变了我们在研究中查找与分子相关数据以及使用此类工具的方式。也有人努力通过公开或使用商业工具进行安全交易来改善研究人员之间的合作。未来的一个主要挑战将是此类数据库和软件方法如何处理随着高通量筛选积累而来的大量数据,并使用户能够得出见解、进行预测并推动项目进展。我们现在讨论如何使一些药物发现数据集的信息更易于获取,以及数据隐私如何不应掩盖在适当时候与合作者共享数据的愿望。我们还讨论了可以提供的其他软件工具,并阐述了我们对大数据时代预测性药物发现未来的看法。我们使用来自我们自己在被忽视疾病研究、合作、移动应用和算法开发方面的一些例子来说明这些观点。

相似文献

1
Bigger data, collaborative tools and the future of predictive drug discovery.更大的数据、协作工具与预测性药物发现的未来。
J Comput Aided Mol Des. 2014 Oct;28(10):997-1008. doi: 10.1007/s10822-014-9762-y. Epub 2014 Jun 19.
6
The Collaborative Drug Discovery (CDD) database.协作药物发现(CDD)数据库。
Methods Mol Biol. 2013;993:139-54. doi: 10.1007/978-1-62703-342-8_10.
7
Cheminformatics in the Service of GPCR Drug Discovery.服务于GPCR药物发现的化学信息学
Methods Mol Biol. 2018;1705:395-411. doi: 10.1007/978-1-4939-7465-8_20.

引用本文的文献

4
Knowledge-based approaches to drug discovery for rare diseases.基于知识的罕见病药物发现方法。
Drug Discov Today. 2022 Feb;27(2):490-502. doi: 10.1016/j.drudis.2021.10.014. Epub 2021 Oct 27.
8
9
Collaborative drug discovery for More Medicines for Tuberculosis (MM4TB).用于治疗更多结核病患者的合作药物研发(MM4TB)。
Drug Discov Today. 2017 Mar;22(3):555-565. doi: 10.1016/j.drudis.2016.10.009. Epub 2016 Nov 22.
10
The Next Era: Deep Learning in Pharmaceutical Research.下一个时代:药物研究中的深度学习。
Pharm Res. 2016 Nov;33(11):2594-603. doi: 10.1007/s11095-016-2029-7. Epub 2016 Sep 6.

本文引用的文献

1
Securely measuring the overlap between private datasets with cryptosets.使用加密集安全测量私有数据集之间的重叠。
PLoS One. 2015 Feb 25;10(2):e0117898. doi: 10.1371/journal.pone.0117898. eCollection 2015.
6
Progress in computational toxicology.计算毒理学的进展。
J Pharmacol Toxicol Methods. 2014 Mar-Apr;69(2):115-40. doi: 10.1016/j.vascn.2013.12.003. Epub 2013 Dec 20.
7
Sharing chemical relationships does not reveal structures.共享化学关系并不能揭示结构。
J Chem Inf Model. 2014 Jan 27;54(1):37-48. doi: 10.1021/ci400399a. Epub 2013 Dec 16.
10
Outsourcing and contract services.外包与合同服务。
J Biomol Screen. 2013 Dec;18(10):1338-9. doi: 10.1177/1087057113505963.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验