Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
J Am Chem Soc. 2012 Feb 29;134(8):3792-803. doi: 10.1021/ja209936u. Epub 2012 Feb 15.
Determination of affinities and binding sites involved in protein-ligand interactions is essential for understanding molecular mechanisms in biological systems. Here we combine singular value decomposition and global analysis of NMR chemical shift perturbations caused by protein-protein interactions to determine the number and location of binding sites on the protein surface and to measure the binding affinities. Using this method we show that the isolated AD1 and AD2 binding motifs, derived from the intrinsically disordered N-terminal transactivation domain of the tumor suppressor p53, both interact with the TAZ2 domain of the transcriptional coactivator CBP at two binding sites. Simulations of titration curves and line shapes show that a primary dissociation constant as small as 1-10 nM can be accurately estimated by NMR titration methods, provided that the primary and secondary binding processes are coupled. Unexpectedly, the site of binding of AD2 on the hydrophobic surface of TAZ2 overlaps with the binding site for AD1, but AD2 binds TAZ2 more tightly. The results highlight the complexity of interactions between intrinsically disordered proteins and their targets. Furthermore, the association rate of AD2 to TAZ2 is estimated to be 1.7 × 10(10) M(-1) s(-1), approaching the diffusion-controlled limit and indicating that intrinsic disorder plus complementary electrostatics can significantly accelerate protein binding interactions.
确定蛋白质-配体相互作用中涉及的亲和力和结合位点对于理解生物系统中的分子机制至关重要。在这里,我们结合奇异值分解和蛋白质-蛋白质相互作用引起的 NMR 化学位移扰动的全局分析,来确定蛋白质表面上的结合位点的数量和位置,并测量结合亲和力。使用这种方法,我们表明,源自肿瘤抑制因子 p53 的无规卷曲 N 端转录激活结构域的分离的 AD1 和 AD2 结合基序都与转录共激活因子 CBP 的 TAZ2 结构域在两个结合位点相互作用。滴定曲线和线形的模拟表明,只要主要和次要的结合过程是耦合的,NMR 滴定方法可以准确地估计出小至 1-10 nM 的主要离解常数。出乎意料的是,AD2 在 TAZ2 疏水面上的结合位点与 AD1 的结合位点重叠,但 AD2 与 TAZ2 的结合更紧密。结果突出了无序蛋白与其靶标之间相互作用的复杂性。此外,AD2 与 TAZ2 的缔合速率估计为 1.7×10(10)M(-1)s(-1),接近扩散控制极限,表明内在无序加上互补的静电作用可以显著加速蛋白质结合相互作用。