Suppr超能文献

[GRADE指南:5. 证据质量评级:发表偏倚]

[GRADE guidelines: 5. Rating the quality of evidence: publication bias].

作者信息

Nolting Alexandra, Perleth Matthias, Langer Gero, Meerpohl Joerg J, Gartlehner Gerald, Kaminski-Hartenthaler Angela, Schünemann Holger J

机构信息

Abteilung Fachberatung Medizin, Gemeinsamer Bundesausschuss, Berlin, Germany.

出版信息

Z Evid Fortbild Qual Gesundhwes. 2012;106(9):670-6. doi: 10.1016/j.zefq.2012.10.015. Epub 2012 Nov 3.

Abstract

In the GRADE approach, randomized trials are classified as high quality evidence and observational studies as low quality evidence but both can be rated down if a body of evidence is associated with a high risk of publication bias. Even when individual studies included in best-evidence summaries have a low risk of bias, publication bias can result in substantial overestimates of effect. Authors should suspect publication bias when available evidence comes from a number of small studies most of which have been commercially funded. A number of approaches based on examination of the pattern of data are available to help assess publication bias. The most popular of these is the funnel plot; all, however, have substantial limitations. Publication bias is likely frequent, and caution in the face of early results, particularly with small sample size and number of events, is warranted.

摘要

在GRADE方法中,随机试验被归类为高质量证据,观察性研究为低质量证据,但如果一组证据存在较高的发表偏倚风险,两者的质量等级都可能下调。即使纳入最佳证据总结的个别研究偏倚风险较低,发表偏倚也可能导致对效应的大幅高估。当现有证据来自许多大多由商业资助的小型研究时,作者应怀疑存在发表偏倚。有多种基于数据模式检查的方法可用于帮助评估发表偏倚。其中最常用的是漏斗图;然而,所有这些方法都有很大的局限性。发表偏倚可能很常见,面对早期结果时应谨慎,尤其是样本量小和事件数量少的情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验