Suppr超能文献

全腔肺连接中的脉动血液动力学的数值和实验研究。

Numerical and experimental investigation of pulsatile hemodynamics in the total cavopulmonary connection.

机构信息

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States.

出版信息

J Biomech. 2013 Jan 18;46(2):373-82. doi: 10.1016/j.jbiomech.2012.11.003. Epub 2012 Nov 30.

Abstract

Computational fluid dynamics (CFD) tools have been extensively applied to study the hemodynamics in the total cavopulmonary connection (TCPC) in patients with only a single functioning ventricle. Without the contraction of a sub-pulmonary ventricle, pulsatility of flow through this connection is low and variable across patients, which is usually neglected in most numerical modeling studies. Recent studies suggest that such pulsatility can be non-negligible and can be important in hemodynamic predictions. The goal of this work is to compare the results of an in-house numerical methodology for simulating pulsatile TCPC flow with experimental results. Digital particle image velocimetry (DPIV) was acquired on TCPC in vitro models to evaluate the capability of the CFD tool in predicting pulsatile TCPC flow fields. In vitro hemodynamic measurements were used to compare the numerical prediction of power loss across the connection. The results demonstrated the complexity of the pulsatile TCPC flow fields and the validity of the numerical approach in simulating pulsatile TCPC flow dynamics in both idealized and complex patient specific models.

摘要

计算流体动力学(CFD)工具已广泛应用于研究单功能心室患者的全腔肺动脉连接(TCPC)中的血液动力学。由于没有肺下腔室的收缩,通过该连接的血流搏动在患者之间较低且变化,这在大多数数值建模研究中通常被忽略。最近的研究表明,这种搏动可能不可忽略,并且在血液动力学预测中很重要。这项工作的目的是将模拟搏动 TCPC 流量的内部数值方法的结果与实验结果进行比较。采用数字粒子图像测速(DPIV)在 TCPC 体外模型上进行采集,以评估 CFD 工具在预测搏动 TCPC 流场方面的能力。体外血液动力学测量用于比较连接功率损耗的数值预测。结果表明,搏动 TCPC 流场的复杂性以及数值方法在模拟理想化和复杂患者特定模型中的搏动 TCPC 流动力学方面的有效性。

相似文献

1
Numerical and experimental investigation of pulsatile hemodynamics in the total cavopulmonary connection.
J Biomech. 2013 Jan 18;46(2):373-82. doi: 10.1016/j.jbiomech.2012.11.003. Epub 2012 Nov 30.
2
Physics-driven CFD modeling of complex anatomical cardiovascular flows-a TCPC case study.
Ann Biomed Eng. 2005 Mar;33(3):284-300. doi: 10.1007/s10439-005-1731-0.
5
Pulsatile blood flow in total cavopulmonary connection: a comparison between Y-shaped and T-shaped geometry.
Med Biol Eng Comput. 2017 Feb;55(2):213-224. doi: 10.1007/s11517-016-1499-4. Epub 2016 Apr 23.
6
Coupling pediatric ventricle assist devices to the Fontan circulation: simulations with a lumped-parameter model.
ASAIO J. 2005 Sep-Oct;51(5):618-28. doi: 10.1097/01.mat.0000176169.73987.0d.
7
Effect of flow pulsatility on modeling the hemodynamics in the total cavopulmonary connection.
J Biomech. 2012 Sep 21;45(14):2376-81. doi: 10.1016/j.jbiomech.2012.07.010. Epub 2012 Jul 28.
8
Hemodynamic study of TCPC using in vivo and in vitro 4D Flow MRI and numerical simulation.
J Biomech. 2015 May 1;48(7):1325-30. doi: 10.1016/j.jbiomech.2015.03.009. Epub 2015 Mar 19.

引用本文的文献

1
The prediction and verification of outcome of extracardiac conduits fontan based on computational fluid dynamics simulation.
Front Physiol. 2022 Nov 24;13:1078140. doi: 10.3389/fphys.2022.1078140. eCollection 2022.
2
Flow profile characteristics in Fontan circulation are associated with the single ventricle dilation and function: principal component analysis study.
Am J Physiol Heart Circ Physiol. 2020 May 1;318(5):H1032-H1040. doi: 10.1152/ajpheart.00686.2019. Epub 2020 Mar 13.
3
Respiratory Effects on Fontan Circulation During Rest and Exercise Using Real-Time Cardiac Magnetic Resonance Imaging.
Ann Thorac Surg. 2016 May;101(5):1818-25. doi: 10.1016/j.athoracsur.2015.11.011. Epub 2016 Feb 10.
4
Non-dimensional physics of pulsatile cardiovascular networks and energy efficiency.
J R Soc Interface. 2016 Jan;13(114):20151019. doi: 10.1098/rsif.2015.1019.
5
Imaging for preintervention planning: pre- and post-Fontan procedures.
Circ Cardiovasc Imaging. 2013 Nov;6(6):1092-101. doi: 10.1161/CIRCIMAGING.113.000335.

本文引用的文献

1
Effect of flow pulsatility on modeling the hemodynamics in the total cavopulmonary connection.
J Biomech. 2012 Sep 21;45(14):2376-81. doi: 10.1016/j.jbiomech.2012.07.010. Epub 2012 Jul 28.
2
CFD and PIV analysis of hemodynamics in a growing intracranial aneurysm.
Int J Numer Method Biomed Eng. 2012 Feb;28(2):214-28. doi: 10.1002/cnm.1459.
3
Visualization of flow structures in Fontan patients using 3-dimensional phase contrast magnetic resonance imaging.
J Thorac Cardiovasc Surg. 2012 May;143(5):1108-16. doi: 10.1016/j.jtcvs.2011.09.067. Epub 2011 Nov 16.
5
Pulmonary hepatic flow distribution in total cavopulmonary connections: extracardiac versus intracardiac.
J Thorac Cardiovasc Surg. 2011 Jan;141(1):207-14. doi: 10.1016/j.jtcvs.2010.06.009.
6
7
Optimum fuzzy filters for phase-contrast magnetic resonance imaging segmentation.
J Magn Reson Imaging. 2009 Jan;29(1):155-65. doi: 10.1002/jmri.21579.
9
Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics.
Circulation. 2007 Sep 11;116(11 Suppl):I165-71. doi: 10.1161/CIRCULATIONAHA.106.680827.
10
Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection.
Ann Biomed Eng. 2007 Feb;35(2):250-63. doi: 10.1007/s10439-006-9224-3. Epub 2006 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验