Suppr超能文献

流量脉动对全腔肺连接血液动力学建模的影响。

Effect of flow pulsatility on modeling the hemodynamics in the total cavopulmonary connection.

机构信息

Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332-0535, USA.

出版信息

J Biomech. 2012 Sep 21;45(14):2376-81. doi: 10.1016/j.jbiomech.2012.07.010. Epub 2012 Jul 28.

Abstract

Total cavopulmonary connection is the result of a series of palliative surgical repairs performed on patients with single ventricle heart defects. The resulting anatomy has complex and unsteady hemodynamics characterized by flow mixing and flow separation. Although varying degrees of flow pulsatility have been observed in vivo, non-pulsatile (time-averaged) boundary conditions have traditionally been assumed in hemodynamic modeling, and only recently have pulsatile conditions been incorporated without completely characterizing their effect or importance. In this study, 3D numerical simulations with both pulsatile and non-pulsatile boundary conditions were performed for 24 patients with different anatomies and flow boundary conditions from Georgia Tech database. Flow structures, energy dissipation rates and pressure drops were compared under rest and simulated exercise conditions. It was found that flow pulsatility is the primary factor in determining the appropriate choice of boundary conditions, whereas the anatomic configuration and cardiac output had secondary effects. Results show that the hemodynamics can be strongly influenced by the presence of pulsatile flow. However, there was a minimum pulsatility threshold, identified by defining a weighted pulsatility index (wPI), above which the influence was significant. It was shown that when wPI<30%, the relative error in hemodynamic predictions using time-averaged boundary conditions was less than 10% compared to pulsatile simulations. In addition, when wPI<50, the relative error was less than 20%. A correlation was introduced to relate wPI to the relative error in predicting the flow metrics with non-pulsatile flow conditions.

摘要

全腔肺动脉连接是对单心室心脏缺陷患者进行一系列姑息性手术修复的结果。由此产生的解剖结构具有复杂且不稳定的血液动力学特性,表现为血流混合和分离。尽管在体内观察到了不同程度的脉动流,但在血液动力学建模中传统上假设了非脉动(时间平均)边界条件,直到最近才在不完整描述其影响或重要性的情况下纳入了脉动条件。在这项研究中,对来自佐治亚理工学院数据库的 24 名具有不同解剖结构和流量边界条件的患者进行了脉动和非脉动边界条件的 3D 数值模拟。在休息和模拟运动条件下比较了流动结构、能量耗散率和压降。结果发现,脉动流是确定边界条件适当选择的主要因素,而解剖结构和心输出量具有次要影响。结果表明,血液动力学可以受到脉动流的强烈影响。然而,存在一个最小的脉动阈值,通过定义加权脉动指数(wPI)来识别,高于该阈值时影响显著。结果表明,当 wPI<30%时,与脉动模拟相比,使用时间平均边界条件进行血液动力学预测的相对误差小于 10%。此外,当 wPI<50 时,相对误差小于 20%。引入了一个相关性,以将 wPI 与使用非脉动流条件预测流量指标的相对误差相关联。

相似文献

1
Effect of flow pulsatility on modeling the hemodynamics in the total cavopulmonary connection.
J Biomech. 2012 Sep 21;45(14):2376-81. doi: 10.1016/j.jbiomech.2012.07.010. Epub 2012 Jul 28.
2
Numerical and experimental investigation of pulsatile hemodynamics in the total cavopulmonary connection.
J Biomech. 2013 Jan 18;46(2):373-82. doi: 10.1016/j.jbiomech.2012.11.003. Epub 2012 Nov 30.
4
Can time-averaged flow boundary conditions be used to meet the clinical timeline for Fontan surgical planning?
J Biomech. 2017 Jan 4;50:172-179. doi: 10.1016/j.jbiomech.2016.11.025. Epub 2016 Nov 10.
5
Personalized stent design for congenital heart defects using pulsatile blood flow simulations.
J Biomech. 2018 Nov 16;81:68-75. doi: 10.1016/j.jbiomech.2018.09.013. Epub 2018 Sep 19.
7
Concurrent use of continuous and pulsatile flow Ventricular Assist Device on a fontan patient: A simulation study.
Artif Organs. 2017 Jan;41(1):32-39. doi: 10.1111/aor.12859. Epub 2016 Dec 26.
8
Pulsatile venous waveform quality affects the conduit performance in functional and "failing" Fontan circulations.
Cardiol Young. 2012 Jun;22(3):251-62. doi: 10.1017/S1047951111001491. Epub 2011 Oct 19.
9
Pulsatile blood flow in total cavopulmonary connection: a comparison between Y-shaped and T-shaped geometry.
Med Biol Eng Comput. 2017 Feb;55(2):213-224. doi: 10.1007/s11517-016-1499-4. Epub 2016 Apr 23.
10
The total cavopulmonary connection resistance: a significant impact on single ventricle hemodynamics at rest and exercise.
Am J Physiol Heart Circ Physiol. 2008 Dec;295(6):H2427-35. doi: 10.1152/ajpheart.00628.2008. Epub 2008 Oct 17.

引用本文的文献

1
In Silico Evaluation of a Self-powered Venous Ejector Pump for Fontan Patients.
Cardiovasc Eng Technol. 2023 Jun;14(3):428-446. doi: 10.1007/s13239-023-00663-5. Epub 2023 Mar 6.
2
Computational Fluid Dynamics Support for Fontan Planning in Minutes, Not Hours: The Next Step in Clinical Pre-Interventional Simulations.
J Cardiovasc Transl Res. 2022 Aug;15(4):708-720. doi: 10.1007/s12265-021-10198-6. Epub 2021 Dec 27.
3
Engineering Perspective on Cardiovascular Simulations of Fontan Hemodynamics: Where Do We Stand with a Look Towards Clinical Application.
Cardiovasc Eng Technol. 2021 Dec;12(6):618-630. doi: 10.1007/s13239-021-00541-y. Epub 2021 Jun 10.
4
The effect of respiration-driven flow waveforms on hemodynamic metrics used in Fontan surgical planning.
J Biomech. 2019 Jan 3;82:87-95. doi: 10.1016/j.jbiomech.2018.10.013. Epub 2018 Oct 25.
6
Can time-averaged flow boundary conditions be used to meet the clinical timeline for Fontan surgical planning?
J Biomech. 2017 Jan 4;50:172-179. doi: 10.1016/j.jbiomech.2016.11.025. Epub 2016 Nov 10.
7
Respiratory Effects on Fontan Circulation During Rest and Exercise Using Real-Time Cardiac Magnetic Resonance Imaging.
Ann Thorac Surg. 2016 May;101(5):1818-25. doi: 10.1016/j.athoracsur.2015.11.011. Epub 2016 Feb 10.
8
Non-dimensional physics of pulsatile cardiovascular networks and energy efficiency.
J R Soc Interface. 2016 Jan;13(114):20151019. doi: 10.1098/rsif.2015.1019.
9
Surgical planning of the total cavopulmonary connection: robustness analysis.
Ann Biomed Eng. 2015 Jun;43(6):1321-34. doi: 10.1007/s10439-014-1149-7. Epub 2014 Oct 15.
10
Numerical and experimental investigation of pulsatile hemodynamics in the total cavopulmonary connection.
J Biomech. 2013 Jan 18;46(2):373-82. doi: 10.1016/j.jbiomech.2012.11.003. Epub 2012 Nov 30.

本文引用的文献

1
Fluid-structure interaction simulations of the Fontan procedure using variable wall properties.
Int J Numer Method Biomed Eng. 2012 May;28(5):513-27. doi: 10.1002/cnm.1485. Epub 2012 Jan 17.
2
Pulsatile venous waveform quality affects the conduit performance in functional and "failing" Fontan circulations.
Cardiol Young. 2012 Jun;22(3):251-62. doi: 10.1017/S1047951111001491. Epub 2011 Oct 19.
3
4
Correction of pulmonary arteriovenous malformation using image-based surgical planning.
JACC Cardiovasc Imaging. 2009 Aug;2(8):1024-30. doi: 10.1016/j.jcmg.2009.03.019.
5
Optimum fuzzy filters for phase-contrast magnetic resonance imaging segmentation.
J Magn Reson Imaging. 2009 Jan;29(1):155-65. doi: 10.1002/jmri.21579.
7
Functional analysis of Fontan energy dissipation.
J Biomech. 2008 Jul 19;41(10):2246-52. doi: 10.1016/j.jbiomech.2008.04.011. Epub 2008 May 27.
8
A new method for registration-based medical image interpolation.
IEEE Trans Med Imaging. 2008 Mar;27(3):370-7. doi: 10.1109/TMI.2007.907324.
9
Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics.
Circulation. 2007 Sep 11;116(11 Suppl):I165-71. doi: 10.1161/CIRCULATIONAHA.106.680827.
10
Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection.
Ann Biomed Eng. 2007 Feb;35(2):250-63. doi: 10.1007/s10439-006-9224-3. Epub 2006 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验