Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA.
J Mol Biol. 2013 Feb 8;425(3):546-62. doi: 10.1016/j.jmb.2012.11.025. Epub 2012 Nov 28.
The Saccharomyces cerevisiae RNase III enzyme Rnt1p preferentially binds to double-stranded RNA hairpin substrates with a conserved (A/u)GNN tetraloop fold, via shape-specific interactions by its double-stranded RNA-binding domain (dsRBD) helix α1 to the tetraloop minor groove. To investigate whether conformational flexibility in the dsRBD regulates the binding specificity, we determined the backbone dynamics of the Rnt1p dsRBD in the free and AGAA hairpin-bound states using NMR spin-relaxation experiments. The intrinsic microsecond-to-millisecond timescale dynamics of the dsRBD suggests that helix α1 undergoes conformational sampling in the free state, with large dynamics at some residues in the α1-β1 loop (α1-β1 hinge). To correlate free dsRBD dynamics with structural changes upon binding, we determined the solution structure of the free dsRBD used in the previously determined RNA-bound structures. The Rnt1p dsRBD has an extended hydrophobic core comprising helix α1, the α1-β1 loop, and helix α3. Analysis of the backbone dynamics and structures of the free and bound dsRBD reveals that slow-timescale dynamics in the α1-β1 hinge are associated with concerted structural changes in the extended hydrophobic core that govern binding of helix α1 to AGAA tetraloops. The dynamic behavior of the dsRBD bound to a longer AGAA hairpin reveals that dynamics within the hydrophobic core differentiate between specific and nonspecific sites. Mutations of residues in the α1-β1 hinge result in changes to the dsRBD stability and RNA-binding affinity and cause defects in small nucleolar RNA processing invivo. These results reveal that dynamics in the extended hydrophobic core are important for binding site selection by the Rnt1p dsRBD.
酿酒酵母 RNase III 酶 Rnt1p 通过其双链 RNA 结合域 (dsRBD) 的 α1 螺旋与四螺旋环的小沟的形状特异性相互作用,优先结合具有保守 (A/u)GNN 四螺旋环折叠的双链 RNA 发夹底物。为了研究 dsRBD 中的构象灵活性是否调节结合特异性,我们使用 NMR 自旋松弛实验确定了 Rnt1p dsRBD 在自由和 AGAA 发夹结合状态下的骨架动力学。dsRBD 的固有微秒到毫秒时间尺度动力学表明,α1 螺旋在自由状态下经历构象采样,α1-β1 环(α1-β1 铰链)中的一些残基存在大的动力学。为了将自由 dsRBD 动力学与结合时的结构变化相关联,我们确定了先前确定的 RNA 结合结构中使用的自由 dsRBD 的溶液结构。Rnt1p dsRBD 具有扩展的疏水性核心,包括α1 螺旋、α1-β1 环和α3 螺旋。对自由和结合 dsRBD 的骨架动力学和结构的分析表明,α1-β1 铰链中的慢时间尺度动力学与扩展疏水性核心中的协同结构变化相关,这些变化控制着α1 螺旋与 AGAA 四螺旋环的结合。与较长的 AGAA 发夹结合的 dsRBD 的动态行为表明,疏水性核心内的动力学可区分特异性和非特异性结合位点。α1-β1 铰链中残基的突变会导致 dsRBD 稳定性和 RNA 结合亲和力的变化,并导致体内小核仁 RNA 加工缺陷。这些结果表明,扩展疏水性核心中的动力学对于 Rnt1p dsRBD 结合位点的选择很重要。