College of Sciences, China University of Mining and Technology, Xuzhou, 221116, China.
Neural Netw. 2013 Feb;38:17-22. doi: 10.1016/j.neunet.2012.10.004. Epub 2012 Nov 7.
This paper analyzes the robustness of global exponential stability of stochastic recurrent neural networks (SRNNs) subject to parameter uncertainty in connection weight matrices. Given a globally exponentially stable stochastic recurrent neural network, the problem to be addressed here is how much parameter uncertainty in the connection weight matrices that the neural network can remain to be globally exponentially stable. We characterize the upper bounds of the parameter uncertainty for the recurrent neural network to sustain global exponential stability. A numerical example is provided to illustrate the theoretical result.
本文分析了在连接权矩阵参数不确定性下随机递归神经网络(SRNN)的全局指数稳定性的鲁棒性。对于一个全局指数稳定的随机递归神经网络,这里要解决的问题是连接权矩阵的参数不确定性有多大,使得神经网络仍能保持全局指数稳定。我们刻画了使递归神经网络维持全局指数稳定性的参数不确定性的上界。给出了一个数值例子来说明理论结果。