State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, PR China.
Colloids Surf B Biointerfaces. 2013 Mar 1;103:136-42. doi: 10.1016/j.colsurfb.2012.09.044. Epub 2012 Oct 23.
In this paper, we investigated the antibacterial activity and the action mode of carbon nanomaterials (CNMs) against the copper-resistant plant pathogenic bacterium Ralstonia solanacearum (R. solanacearum). Single-walled carbon nanotubes (SWCNTs) dispersion was found to show the strongest antibacterial activity, sequentially followed by graphene oxide (GO), multi-walled carbon nanotubes (MWCNTs), reduced graphene oxide (rGO) and fullerene (C(60)). Our investigation of the antibacterial mechanism of SWCNTs and GO indicated that the damage to the cell membrane leads to the release of cytoplasm materials from the bacterium, which is the causative factor for the inactivation of R. solanacearum bacterial cells. The superior antibacterial effect, and the novel antibacterial mode of SWCNTs and GO suggest that those carbon nanomaterials may have important applications in the control of plant bacterial diseases.
在本文中,我们研究了碳纳米材料(CNMs)对铜抗性植物病原菌青枯菌(Ralstonia solanacearum,R. solanacearum)的抗菌活性和作用模式。发现单壁碳纳米管(SWCNTs)分散体具有最强的抗菌活性,其次是氧化石墨烯(GO)、多壁碳纳米管(MWCNTs)、还原氧化石墨烯(rGO)和富勒烯(C(60))。我们对 SWCNTs 和 GO 的抗菌机制的研究表明,细胞膜的损伤导致细胞质物质从细菌中释放出来,这是导致 R. solanacearum 细菌细胞失活的原因。SWCNTs 和 GO 的优异抗菌效果和新颖的抗菌模式表明,这些碳纳米材料可能在控制植物细菌性疾病方面具有重要应用。