Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
Sensors (Basel). 2012 Sep 26;12(10):13075-87. doi: 10.3390/s121013075.
This study presents an electromagnetically-actuated reciprocating pump for high-flow-rate microfluidic applications. The pump comprises four major components, namely a lower glass plate containing a copper microcoil, a middle PMMA plate incorporating a PDMS diaphragm with a surface-mounted magnet, upper PMMA channel plates, and a ball-type check valve located at the channel inlet. When an AC current is passed through the microcoil, an alternating electromagnetic force is established between the coil and the magnet. The resulting bi-directional deflection of the PDMS diaphragm causes the check-valve to open and close; thereby creating a pumping effect. The experimental results show that a coil input current of 0.4 A generates an electromagnetic force of 47 mN and a diaphragm deflection of 108 μm. Given an actuating voltage of 3 V and a driving frequency of 15 Hz, the flow rate is found to be 13.2 mL/min under zero head pressure conditions.
本研究提出了一种用于高通量微流控应用的电磁驱动往复泵。该泵由四个主要部分组成,分别是:一个下部的载有铜微线圈的玻璃盘、一个中间的聚甲基丙烯酸甲酯(PMMA)盘,其中嵌入了一个带有表面安装磁铁的 PDMS 膜片、上 PMMA 通道板和位于通道入口处的球型止回阀。当交流电流通过微线圈时,线圈和磁铁之间会产生交替的电磁力。结果,PDMS 膜片的双向偏转会导致止回阀打开和关闭,从而产生泵送效果。实验结果表明,线圈输入电流为 0.4 A 时会产生 47 mN 的电磁力和 108 μm 的膜片偏置。在 3 V 的驱动电压和 15 Hz 的驱动频率下,在零头压条件下,流量为 13.2 mL/min。