Suppr超能文献

形状可编程的三维微流控结构。

Shape-Programmable Three-Dimensional Microfluidic Structures.

机构信息

Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.

Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States.

出版信息

ACS Appl Mater Interfaces. 2022 Apr 6;14(13):15599-15607. doi: 10.1021/acsami.1c24799. Epub 2022 Mar 23.

Abstract

Microfluidic devices are gaining extensive interest due to their potential applications in wide-ranging areas, including lab-on-a-chip devices, fluid delivery, and artificial vascular networks. Most current microfluidic devices are in a planar design with fixed configurations once formed, which limits their applications such as in engineered vascular networks in biology and programmable drug delivery systems. Here, shape-programmable three-dimensional (3D) microfluidic structures, which are assembled from a bilayer of channel-embedded polydimethylsiloxane (PDMS) and shape-memory polymers (SMPs) via compressive buckling, are reported. 3D microfluidics in diverse geometries including those in open-mesh configurations are presented. In addition, they can be programmed into temporary shapes and recover their original shape under thermal stimuli due to the shape memory effect of the SMP component, with fluid flow in the microfluidic channels well maintained in both deformed and recovered shapes. Furthermore, the shape-fixing effect of SMPs enables freestanding open-mesh 3D microfluidic structures without the need for a substrate to maintain the 3D shape as used in previous studies. By adding magnetic particles into the PDMS layer, magnetically responsive 3D microfluidic structures are enabled to achieve fast, remote programming of the structures via a portable magnet. A 3D design phase diagram is constructed to show the effects of the magnetic PDMS/SMP thickness ratio and the volume fraction of magnetic particles on the shape programmability of the 3D microfluidic structures. The developed shape-programmable, open-mesh 3D microfluidic structures offer many opportunities for applications including tissue engineering, drug delivery, and many others.

摘要

微流控器件由于其在广泛领域中的潜在应用而受到广泛关注,包括芯片实验室设备、流体输送和人工血管网络。大多数当前的微流控器件采用平面设计,一旦形成就具有固定的配置,这限制了它们在生物学中的工程血管网络和可编程药物输送系统等方面的应用。在这里,报道了由嵌入通道的聚二甲基硅氧烷(PDMS)和形状记忆聚合物(SMP)的双层通过压缩屈曲组装而成的形状可编程的三维(3D)微流控结构。呈现了具有各种几何形状的 3D 微流控,包括开网配置。此外,由于 SMP 组件的形状记忆效应,它们可以被编程为临时形状,并在热刺激下恢复其原始形状,微流控通道中的流体流动在变形和恢复形状时都能很好地保持。此外,SMP 的形状固定效应使得具有独立式开网 3D 微流控结构无需使用基底来保持 3D 形状,如以前的研究中所使用的。通过将磁性颗粒添加到 PDMS 层中,磁性响应的 3D 微流控结构能够通过便携式磁铁快速、远程编程结构。构建了 3D 设计相图,以显示磁性 PDMS/SMP 厚度比和磁性颗粒的体积分数对 3D 微流控结构的形状可编程性的影响。开发的形状可编程、开网 3D 微流控结构为组织工程、药物输送和许多其他应用提供了许多机会。

相似文献

1
Shape-Programmable Three-Dimensional Microfluidic Structures.
ACS Appl Mater Interfaces. 2022 Apr 6;14(13):15599-15607. doi: 10.1021/acsami.1c24799. Epub 2022 Mar 23.
3
Programmable microfluidic logic device fabricated with a shape memory polymer.
Lab Chip. 2018 Sep 11;18(18):2865-2872. doi: 10.1039/c8lc00627j.
4
Automatically Programmable Shape-Memory Polymers Based on Asymmetric Swelling of Bilayer Structures.
Macromol Rapid Commun. 2018 May;39(9):e1800039. doi: 10.1002/marc.201800039. Epub 2018 Mar 8.
6
Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
PLoS One. 2021 Feb 3;16(2):e0245206. doi: 10.1371/journal.pone.0245206. eCollection 2021.
7
Remotely Triggered Assembly of 3D Mesostructures Through Shape-Memory Effects.
Adv Mater. 2019 Dec;31(52):e1905715. doi: 10.1002/adma.201905715. Epub 2019 Nov 13.
9
Emerging 3D printing technologies and methodologies for microfluidic development.
Anal Methods. 2022 Aug 4;14(30):2885-2906. doi: 10.1039/d2ay00798c.

引用本文的文献

1
Enabling Soft Molds for Manufacturing Polymeric Surface Structures with Overhangs.
Langmuir. 2025 May 20;41(19):11935-11941. doi: 10.1021/acs.langmuir.5c00307. Epub 2025 May 7.
2
Shape-memory microfluidic chips for fluid and droplet manipulation.
Biomicrofluidics. 2024 Apr 1;18(2):021301. doi: 10.1063/5.0188227. eCollection 2024 Mar.
3
Functional PDMS Elastomers: Bulk Composites, Surface Engineering, and Precision Fabrication.
Adv Sci (Weinh). 2023 Dec;10(34):e2304506. doi: 10.1002/advs.202304506. Epub 2023 Oct 9.
4
Contactless deformation of fluid interfaces by acoustic radiation pressure.
Sci Rep. 2023 Sep 7;13(1):14703. doi: 10.1038/s41598-023-39464-0.
6
Biosensor integrated tissue chips and their applications on Earth and in space.
Biosens Bioelectron. 2023 Feb 15;222:114820. doi: 10.1016/j.bios.2022.114820. Epub 2022 Oct 20.

本文引用的文献

1
Complex 3D microfluidic architectures formed by mechanically guided compressive buckling.
Sci Adv. 2021 Oct 22;7(43):eabj3686. doi: 10.1126/sciadv.abj3686. Epub 2021 Oct 20.
2
Ferromagnetic soft continuum robots.
Sci Robot. 2019 Aug 28;4(33). doi: 10.1126/scirobotics.aax7329.
5
Remotely Triggered Assembly of 3D Mesostructures Through Shape-Memory Effects.
Adv Mater. 2019 Dec;31(52):e1905715. doi: 10.1002/adma.201905715. Epub 2019 Nov 13.
7
Latchable microfluidic valve arrays based on shape memory polymer actuators.
Lab Chip. 2019 Feb 12;19(4):608-617. doi: 10.1039/c8lc01024b.
8
Bioengineering-inspired three-dimensional culture systems: Organoids to create tumor microenvironment.
Gene. 2019 Feb 20;686:203-212. doi: 10.1016/j.gene.2018.11.058. Epub 2018 Nov 24.
10
Programmable microfluidic logic device fabricated with a shape memory polymer.
Lab Chip. 2018 Sep 11;18(18):2865-2872. doi: 10.1039/c8lc00627j.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验