National Institute for Materials Science, 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan.
Colloids Surf B Biointerfaces. 2013 Mar 1;103:288-97. doi: 10.1016/j.colsurfb.2012.10.040. Epub 2012 Nov 2.
With the remarkable progress in the field of gene technology, proteins have gained an important function in the field of disease diagnosis and treatment. Protein bioadsorption has drawn increasing attention partly because of the promising advances for diagnostic assays, sensors, separations, and gene technology. Mesocage alumina has a cage-type structure with high surface area and pore volume, exhibiting superior capabilities for protein adsorption. In this study, we report the size-selective adsorption/removal of virtual proteins having different shapes, sizes, functions, and properties, including insulin, HopPmaL domain, lysozyme, galectin-3, β-lactoglobulin, α-1-antitrypsin, α-amylase, and myosin in aqueous water using mesocage alumina. The mesoporous alumina monoliths have unique morphology and physical properties and enhanced protein adsorption characteristics in terms of sample loading capacity and quantity, thereby ensuring a higher concentration of proteins, interior pore diffusivity, and encapsulation in a short period. Thermodynamic analysis shows that protein adsorption on mesocage alumina monoliths is favorable and spontaneous. Theoretical models have been studied to investigate the major driving forces to achieve the most optimal performance of protein adsorption. The development of ultra- or micrometer-scale morphology composed of mesocage-shaped mesoporous monoliths or alumina network clusters can be effectively used to encapsulate the macromolecules into the interior cage cavities, which can greatly assist in other potentials for biomedical applications. Furthermore, the adsorption of a single protein from mixtures based on size- and shape-selective separation can open up new ways to produce micro-objects that suit a given protein encapsulation design.
随着基因技术领域的显著进步,蛋白质在疾病诊断和治疗领域获得了重要功能。蛋白质生物吸附因其在诊断分析、传感器、分离和基因技术方面的有希望的进展而受到越来越多的关注。介孔氧化铝具有笼型结构,具有高比表面积和孔体积,表现出优越的蛋白质吸附能力。在这项研究中,我们报告了使用介孔氧化铝对具有不同形状、大小、功能和性质的虚拟蛋白质(包括胰岛素、HopPmaL 结构域、溶菌酶、半乳糖凝集素-3、β-乳球蛋白、α-1-抗胰蛋白酶、α-淀粉酶和肌球蛋白)进行尺寸选择性吸附/去除。介孔氧化铝整体具有独特的形态和物理性质,并且在样品负载能力和数量方面具有增强的蛋白质吸附特性,从而确保蛋白质具有更高的浓度、内部孔扩散性和在短时间内的封装。热力学分析表明,蛋白质在介孔氧化铝整体上的吸附是有利和自发的。理论模型已经被研究以研究实现蛋白质吸附最佳性能的主要驱动力。由介孔笼形介孔整体或氧化铝网络簇组成的超微或微米尺度形态的发展可有效地用于将大分子封装到内部笼腔中,这可极大地有助于其他生物医学应用的潜力。此外,基于尺寸和形状选择性分离从混合物中吸附单一蛋白质可以开辟新的途径,生产适合给定蛋白质封装设计的微物体。