Suppr超能文献

利用介孔金属氧化物纳米粒子从哺乳动物细胞中选择性包裹血红素蛋白。

Selective encapsulation of hemoproteins from mammalian cells using mesoporous metal oxide nanoparticles.

机构信息

National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan; Graduate School for Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.

National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan; Graduate School for Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.

出版信息

Colloids Surf B Biointerfaces. 2013 Nov 1;111:460-8. doi: 10.1016/j.colsurfb.2013.06.037. Epub 2013 Jul 2.

Abstract

A key requirement in successful protein encapsulation is the fabrication of selective protein supercaptors that are not impeded by the physical shape and three-dimensional hydrodynamics of the protein, exhibit minimal clogging effect but with high protein retention, and with uniformly sized adsorbent pores. We report a novel nanomagnet-selective supercaptor approach in the encapsulation of hemoprotein from mammalian cells using mesoporous metal oxide nanoparticles (NPs). Different morphologies of mesoporous NiO and Fe3O4 NPs were fabricated. Among these nanoadsorbents, NiO nanoroses (NRs) had higher loading capacity of hemoprotein than NiO nanospheres (NSs) and nanoplatelets (NPLs), or even superparamagnetic Fe3O4 NPs. The key finding of this study was that mesoporous NiO nanomagnet supercaptors show exceptional encapsulation and selective separation of high-concentration Hb from human blood. In this induced-fit separation model, in addition to the heme group distributions and protein-carrier binding energy, the morphology and magnetic properties of NiO NPs had a key function in broadening the controlled immobilization affinity and selectivity of hemoproteins. In addition, thermodynamics, kinetics, and theoretical studies were carried out to investigate the optimal performance of protein adsorption.

摘要

成功封装蛋白质的一个关键要求是制造选择性的蛋白质超级捕获器,这种超级捕获器不应受蛋白质的物理形状和三维流体动力学的影响,应表现出最小的堵塞效应,但具有较高的蛋白质保留率,且具有均匀大小的吸附剂孔。我们报告了一种使用介孔金属氧化物纳米粒子(NPs)封装哺乳动物细胞中血红素蛋白的新型纳米磁体选择性超级捕获器方法。制备了不同形态的介孔 NiO 和 Fe3O4 NPs。在这些纳米吸附剂中,NiO 纳米玫瑰花(NRs)比 NiO 纳米球(NSs)和纳米板(NPLs)甚至超顺磁 Fe3O4 NPs 具有更高的血红素蛋白负载能力。这项研究的主要发现是,介孔 NiO 纳米磁体超级捕获器能够出色地从人血中封装和选择性分离高浓度的 Hb。在这种诱导契合分离模型中,除了卟啉基团分布和蛋白质载体结合能之外,NiO NPs 的形态和磁性在拓宽血红素蛋白的控制固定亲和力和选择性方面起着关键作用。此外,还进行了热力学、动力学和理论研究,以研究蛋白质吸附的最佳性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验