Suppr超能文献

具有氧化石墨烯钝化的单壁碳纳米管场效应晶体管,用于快速、灵敏和选择性的蛋白质检测。

Single-walled carbon nanotube field-effect transistors with graphene oxide passivation for fast, sensitive, and selective protein detection.

机构信息

Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211, USA.

出版信息

Biosens Bioelectron. 2013 Apr 15;42:186-92. doi: 10.1016/j.bios.2012.10.041. Epub 2012 Oct 23.

Abstract

We report a novel technique to design an insulating membrane with attachment sites on top of single-walled carbon nanotubes (SWNTs) for achieving high sensitivity and selectivity in an SWNT field-effect transistor (FET) biosensor. Because electronic properties of SWNTs are extremely sensitive to the surface state, direct immobilization of proteins or DNAs onto SWNTs will generate surface defects through chemical reactions or physical adsorption, resulting in degradation of performance and instability of SWNT-FET biosensor devices. Here we demonstrate fabrication of novel FET biosensor devices using SWNTs as semiconducting channels, and a monolayer of graphene oxide (GO) membrane covered on the SWNTs as a passivating layer to avoid direct attachment of biomaterials on SWNTs, thereby preserving intrinsic electrical properties of SWNTs. Gold nanoparticles (Au NPs) are decorated on the GO layer for the covalent attachment of biotin, which is then used to selectively detect the target avidin. The passivation with GO layers can effectively lead to enhanced sensitivity of biosensor devices through increasing the on/off ratio of FET sensors.

摘要

我们报告了一种设计具有顶部附着位点的绝缘膜的新技术,用于在单壁碳纳米管(SWNT)场效应晶体管(FET)生物传感器中实现高灵敏度和选择性。由于 SWNT 的电子性质对表面状态极其敏感,因此将蛋白质或 DNA 直接固定到 SWNT 上会通过化学反应或物理吸附产生表面缺陷,从而导致 SWNT-FET 生物传感器器件的性能下降和不稳定。在这里,我们展示了使用 SWNT 作为半导体通道的新型 FET 生物传感器器件的制造,以及覆盖在 SWNT 上的单层氧化石墨烯(GO)膜作为钝化层,以避免生物材料直接附着在 SWNT 上,从而保持 SWNT 的固有电性能。金纳米粒子(Au NPs)被修饰在 GO 层上,用于生物素的共价附着,然后用于选择性地检测靶标亲和素。GO 层的钝化可以通过增加 FET 传感器的开/关比,有效地提高生物传感器器件的灵敏度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验