二维材料场效应晶体管生物传感器研究进展:成就、机制与展望。

Review on two-dimensional material-based field-effect transistor biosensors: accomplishments, mechanisms, and perspectives.

机构信息

School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.

Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China.

出版信息

J Nanobiotechnology. 2023 Apr 30;21(1):144. doi: 10.1186/s12951-023-01898-z.

Abstract

Field-effect transistor (FET) is regarded as the most promising candidate for the next-generation biosensor, benefiting from the advantages of label-free, easy operation, low cost, easy integration, and direct detection of biomarkers in liquid environments. With the burgeoning advances in nanotechnology and biotechnology, researchers are trying to improve the sensitivity of FET biosensors and broaden their application scenarios from multiple strategies. In order to enable researchers to understand and apply FET biosensors deeply, focusing on the multidisciplinary technical details, the iteration and evolution of FET biosensors are reviewed from exploring the sensing mechanism in detecting biomolecules (research direction 1), the response signal type (research direction 2), the sensing performance optimization (research direction 3), and the integration strategy (research direction 4). Aiming at each research direction, forward perspectives and dialectical evaluations are summarized to enlighten rewarding investigations.

摘要

场效应晶体管(FET)被认为是下一代生物传感器最有前途的候选者,它具有免标记、易于操作、成本低、易于集成以及可直接在液体环境中检测生物标志物等优点。随着纳米技术和生物技术的蓬勃发展,研究人员正试图从多个策略提高 FET 生物传感器的灵敏度并拓宽其应用场景。为了使研究人员能够深入理解和应用 FET 生物传感器,本文聚焦于多学科技术细节,从探索检测生物分子的传感机制(研究方向 1)、响应信号类型(研究方向 2)、传感性能优化(研究方向 3)和集成策略(研究方向 4),对 FET 生物传感器的迭代和演化进行了综述。针对每个研究方向,本文总结了前瞻性观点和辩证评价,以启发有价值的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3f5/10149028/fd889f00175c/12951_2023_1898_Sch1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索